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The Yeast Protein Interaction Network Evolves Rapidly and Contains Few
Redundant Duplicate Genes

Andreas Wagner
Department of Biology, University of New Mexico, and Santa Fe Institute, Santa Fe, New Mexico

In this paper, the structure and evolution of the protein interaction network of the yeast Saccharomyces cerevisiae
is analyzed. The network is viewed as a graph whose nodes correspond to proteins. Two proteins are connected by
an edge if they interact. The network resembles a random graph in that it consists of many small subnets (groups
of proteins that interact with each other but do not interact with any other protein) and one large connected subnet
comprising more than half of all interacting proteins. The number of interactions per protein appears to follow a
power law distribution. Within approximately 200 Myr after a duplication, the products of duplicate genes become
almost equally likely to (1) have common protein interaction partners and (2) be part of the same subnetwork as
two proteins chosen at random from within the network. This indicates that the persistence of redundant interaction
partners is the exception rather than the rule. After gene duplication, the likelihood that an interaction gets lost
exceeds 2.2 3 1023/Myr. New interactions are estimated to evolve at a rate that is approximately three orders of
magnitude smaller. Every 300 Myr, as many as half of all interactions may be replaced by new interactions.

Introduction

Do most gene duplicates retain similar functions
for long periods of time? Or do they diverge in function
soon after duplication? There is evidence for both pos-
sibilities. First, higher metazoan genomes contain scores
of genes with overlapping functions (Joyner et al. 1991;
Tautz 1992; Thomas 1993; Cadigan, Grossniklaus, and
Gehring 1994; Gonzalez-Gaitan et al. 1994; Fromental-
Ramain et al. 1996; Wang et al. 1996; Wilkins 1997).
In well-studied cases, overlap in gene functions is dem-
onstrated biochemically. Alternatively, genetic evidence,
that is, weak phenotypic effects of a synthetic null mu-
tation in one duplicate, has been used to suggest over-
lapping gene functions. Particularly in vertebrates, many
genes with overlapping functions are remnants of an-
cient (.400 Myr) gene or genome duplications (Joyner
et al. 1991; Thomas 1993; Fromental-Ramain et al.
1996; Sharman and Holland 1996; Wang et al. 1996;
Bailey et al. 1997). However, even unicellular eukary-
otes contain distantly related gene pairs with similar
functions. A case in point is that of the CLN genes of
budding yeast, a family of three cyclin genes whose
products regulate the activity of the yeast cyclin-depen-
dent kinase Cdc28p (Nasmyth 1993). Jointly, they are
required for the transition from the G1-phase to the S-
phase of the yeast cell cycle. Individually, null mutants
have weak phenotypic effects (Benton et al. 1993). For
instance, a null mutation in CLN1 does not exhibit a
growth defect on minimal medium (Smith et al. 1996).
The most closely related genes in this family are CLN1
and CLN2. Since their duplication, an estimated Ks 5
2.4 synonymous nucleotide substitutions have occurred
per synonymous site on their DNA (Li 1997). Below, it
is estimated that for yeast, a Ks 5 1 among duplicated
genes corresponds to a duplication age of approximately
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100 Myr. By this measure, this duplication may be over
200 Myr old. Another example involves the three TPK
genes from yeast. All of them are catalytic subunits of
the yeast cyclic AMP-dependent protein kinase. Any
two of the three genes are dispensable for growth (Toda
et al. 1987). The most closely related pair is TPK1-
TPK3, with Ks 5 1.31. Based on such examples, it ap-
pears that gene duplicates may retain similar functions
long after a duplication.

Only indirect evidence is available for rapid func-
tional divergence after gene duplication. A number of
case studies suggest that positive selection of advanta-
geous mutations occurs after duplication (Long and
Langley 1993; Benton et al. 1997; Cirera and Aguade
1998; Tsaur, Ting, and Wu 1998; Zhang, Rosenberg, and
Nei 1998). Unfortunately, it is usually unknown whether
such mutations often cause a change in function. An
exception is the primate genes for eosinophil cationic
proteins (ECPs) and for eosinophil-derived neurotoxin
(EDN). They were duplicated an estimated 31 MYA
(Zhang et al. 1998). EDN has high RNAse activity and
may act as an antiretroviral agent. ECP is an antibac-
terial toxin exerting its effects independently of RNAse
activity by making pores in bacterial cell membranes. A
second line of evidence involves the divergence of ex-
pression patterns after duplication. If duplicates are ex-
pressed in different parts of an organism, then they are
likely to have different biological functions, regardless
of whether their biochemical activities are identical. Ex-
amples include the expression patterns of the dopa de-
carboxylase gene and the a-methyldopa hypersensitive
(amd) gene from Drosophila melanogaster. In the close-
ly related sibling species Drosophila simulans, the amd
gene has evolved a new expression pattern within the
last 2–5 Myr (Wang, Marsh, and Ayala 1996).

The relatively few examples of rapidly diverging
functions in duplicate genes contrast with the greater
documented number of gene duplicates with similar
functions. However, it is not valid to conclude that rapid
divergence of function is rare. After all, our knowledge
in this area relies only on case studies. The purpose of
this paper is to address this question more systematically
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and on a genomewide scale. At what rate does func-
tional divergence occur after gene duplication for a large
sample of duplicate genes in a genome? Addressing this
question will also shed light on the evolution of a large
genetic network.

Before studying the evolution of function in many
genes, one has to make a difficult choice. What aspect
of function should one focus on? Genes exert their bi-
ological roles in many different ways. Some gene prod-
ucts are parts of subcellular structures, others engage in
protein-protein interactions, protein-DNA interactions,
or catalytic interactions with small molecules. Moreover,
genes with the same biochemical activities may be ex-
pressed at different times or in different places. A de-
tailed biochemical understanding of the function of all
of an organism’s genes is not within reach. However,
genomic technologies permit the analysis of one aspect
of gene function for all genes. For instance, microarray
analysis (DeRisi, Iyer, and Brown 1997) can be used to
analyze transcriptional regulatory interactions on a gen-
omewide scale. The validity of any functional genomics
study rests on the implicit assumption that studying one
aspect of gene function allows us to learn about the
biology of an organism. The aspect of gene function
studied here is protein-protein interaction, i.e., the num-
ber and identity of proteins with which the products of
duplicate genes in the yeast Saccharomyces cerevisiae
interact. The required information on these protein-pro-
tein interactions comes from a large-scale experiment
(Uetz et al. 2000) using the yeast two-hybrid assay
(Fields and Song 1989).

The yeast two-hybrid assay (Fields and Song 1989)
takes advantage of the fact that many eukaryotic tran-
scription factors have two separate domains, one re-
quired for binding of the transcription factor to DNA,
and another one required for interaction with RNA poly-
merase II and for the initiation of transcription. In a two-
hybrid assay, a known protein fused to the DNA-binding
domain of a transcription factor is transfected into a
yeast cell bearing a reporter gene that is under the con-
trol of the DNA-binding domain. This fusion protein can
then be used as ‘‘bait’’ to screen a library of cDNA
clones fused to the activation domain of the transcription
factor. If the bait protein interacts physically with a fu-
sion protein expressed from the library, then the DNA-
binding domain and the activation domain are held in
physical proximity, and the reporter gene is expressed.
In an effort to elucidate protein interactions on a geno-
mewide basis, this method has been applied to the ge-
nomes of viruses (Bartel et al. 1996; McGraith et al.
2000), as well as to the genome of budding yeast, yield-
ing a comprehensive map of protein-protein interactions
in yeast (Uetz et al. 2000).

Large-scale two-hybrid assays are tools to identify
candidates for interacting proteins. However, they may
identify interactions erroneously. First, a protein itself
may be able to activate transcription without interacting
with an activation domain fusion. Second, because of
the extensive use of chimeric proteins, misfolding might
occur and yield spurious interactions. Third, some pro-
teins might be toxic when expressed in yeast. Fourth,

proteins that are coexpressed during the assay might not
normally be expressed at the same time or in the same
location. Other interactions might be missed, for ex-
ample, because they are too transient or because a pro-
tein has a strong targeting signal directing it to some
compartment other than the nucleus. In sum, the map of
protein-protein interactions (Uetz et al. 2000) used as
the raw material for this study is best viewed as a sta-
tistical estimate of the protein interaction network, an
estimate with a possibly considerable number of false-
positive and false-negative interactions.

Materials and Methods
Protein Interaction Data and Graph Analysis

Data for pairwise interactions among yeast proteins as
reported in Uetz et al. (2000) were obtained from http://
depts.washington.edu/sfields/projects/YPLM/Nature-plain.
html on February 15, 2000. Utilizing the LEDA library
of C11 data types (Mehlhorn and Naher 1999), this list
was converted into a graph whose nodes represent pro-
teins and whose edges correspond to protein interac-
tions. There were 43 proteins that were reported to in-
teract with themselves. Before further analysis (except
for the analysis of self-interacting gene duplicates shown
in fig. 6), all such self-interactions were eliminated. Self-
interactions are interactions between two protein prod-
ucts of the same gene, such as might occur for homo-
dimerizing proteins. In earlier large-scale two-hybrid
studies that used randomly generated DNA libraries,
some reported self-interactions may have been due to
intramolecular associations between protein domains
(Bartel et al. 1996). This is not likely to be a confound-
ing factor here, because full-length cDNA clones of all
yeast open reading frames were used in the analysis
(Uetz et al. 2000). The resulting protein interaction
graph has n 5 985 proteins that engage in k 5 899
pairwise interactions. All graph statistics reported below
were calculated by exhaustive enumeration using algo-
rithms implemented in LEDA (Mehlhorn and Naher
1999).

Two proteins v0 and vi are connected if there exists
a path, i.e., a sequence of adjacent nodes v0, v1, . . . ,
vi21, vi from v0 to vi. The path length l is defined as the
number of edges in the shortest path between v0 and vi.
The characteristic path length L of a graph is the path
length between two nodes averaged over all pairs of
nodes. Another quantity (Watts and Strogatz 1998) char-
acterizing a graph is the clustering coefficient C(v) of a
node v. Consider all kv nodes adjacent to a node v, and
count the number m of edges that exist among these kv

nodes (not including edges connecting them to v). The
maximum possible m is kv(kv 2 1)/2, in which case all
m nodes are connected to each other. Let C(v):5 m/(kv(kv

2 1)/2) measure the ‘‘cliquishness’’ of the neighborhood
of v, i.e., what fraction of the nodes adjacent to v are
also adjacent to each other. In extension, the clustering
coefficient C of the graph is defined as the average of
C(v) over all v. It is very close to 0 for very large ran-
dom graphs.
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Random Graph Comparison

Two types of random graphs are explored here: Er-
dõs-Rényi (ER) random graphs, and random graphs with
a degree distribution that follows a power law (PL). An
ER random graph consists of n nodes and k edges,
where any pair of nodes is equally likely to be connected
by one of the k edges (Bollobás 1985). Finding a ran-
dom graph with a best fit to the observed protein net-
work is made difficult by the fact that a random graph
of the same n and k as the yeast protein network has an
expected number of n0 5 159 isolated nodes, i.e., nodes
that are not connected to any other nodes (n0 ø n[1 2
2k/(n(n 2 1)]n21 for a sparse random graph). However,
by its very nature, the protein interaction network is
defined only for nodes that are not isolated. In order to
find a random graph that is a best fit for the yeast protein
interaction network but does not have any isolated
nodes, a random graph with the same k but a larger
number n of nodes than the protein network was chosen.
With the aid of the above formula, this n was chosen
such that when all isolated nodes were removed from
the resulting random graph, the remaining graph had (1)
an expected number of n 5 999 nodes, (2) k 5 899
edges, and (3) no isolated edges, as does the yeast pro-
tein interaction network. The required value of n was
calculated numerically as n 5 1,325. Random number
generators used were based on Mehlhorn and Naher
(1999, section 3.2.2) as described by Knuth (1981, p.
92).

PL random graphs are random graphs whose de-
gree probability distribution P(d) is proportional to d2t

for some constant t. Such graphs, with a prespecified
number of n 5 6,279 nodes and a number of edges k
approximately identical to that of the yeast protein in-
teraction network, were generated following a prescrip-
tion by M. Newman (personal communication). Briefly,
a random graph with n 5 6,279 isolated nodes was gen-
erated. A node was then chosen at random from this
graph. A random integer d . 0 with the desired PL
distribution was then assigned to this node in the fol-
lowing way. First, a random number d 5 2g*log(1 2
r) was generated, where r is a random real number
uniformly distributed in the interval (0, 1), and g . 0
is a constant (see below). The symbol x refers to the
smallest integer greater than x. Second, this number d
was accepted with probability d2t. If d was not accepted,
it was discarded, a new d was generated according to
the same prescription, and this process was repeated un-
til a d was accepted. Strictly speaking, the resulting dis-
tribution of d is a PL with an exponential cutoff, P(d)
} d2texp(2d/g). However, a large value of g 5 1,000
was used here, such that the distortion caused by the
cutoff was negligible. Once a d was accepted, it was
assigned to the randomly chosen node. Another node
was chosen at random (without replacement of the pre-
viously chosen node), an integer d was assigned to it in
the same way, and this process was repeated until the
sum S of all the integers assigned to the chosen nodes
first exceeded 2k. The integers assigned to each node
correspond to the node’s degree. They may also be

thought of as the ‘‘stubs’’ of edges emerging from a
node. Two such stubs were then chosen at random, and
the respective nodes were connected via an edge until
the reservoir of stubs was exhausted, i.e., until S/2 edges
had been placed on the graph.

Gene Duplication Data

Data on yeast gene duplicates were obtained from
John Conery (Department of Computer Science, Uni-
versity of Oregon) and were generated as described in
Lynch and Conery (2000). Briefly, gapped BLAST (Al-
tschul et al. 1997) was used for pairwise amino acid
sequence comparisons of all yeast open reading frames
as obtained from GenBank. All protein pairs with
BLAST alignment scores greater than 1022 were re-
tained for further analysis. Then, the following conser-
vative approach was followed to retain only unambig-
uously aligned sequences. Using the protein alignment
generated by BLAST as a guide, a sequence pair was
scanned to the right of each alignment gap. All sequence
from the end of the gap through the first ‘‘anchor’’ pair
of matched amino acids was discarded. All subsequent
sequence (exclusive the anchor pair of amino acids) was
retained if a second pair of matching amino acids was
found within less than six amino acids from the first.
This procedure was then repeated to the left of each
alignment gap (see Lynch and Conery [2000] for a more
detailed description and justification). The retained por-
tion of each amino acid sequence alignment was then
used jointly with DNA sequence information to generate
nucleotide sequence alignments of genes. For each gene
pair in this data set, the fraction Ks of synonymous (si-
lent) substitutions per silent site, as well as the fraction
Ka of replacement substitutions per replacement site,
was estimated using the method of Li (1993). Of all
aligned gene pairs, only those with Ks , 5 were includ-
ed in the analysis presented here. There were 9,059 such
pairs (1,041 pairs with 0 # Ks , 1, 2,378 pairs with 1
# Ks , 2, 3,822 pairs with 2 # Ks , 3, 1,403 pairs
with 3 # Ks , 4, and 415 pairs with 4 # Ks , 5). The
mean and maximum values of Ka for these 9,059 gene
pairs were 0.68 (SE 5 2.8 3 1023) and 1.55, respec-
tively. Both member genes were part of the protein in-
teraction network for 387 among these 9,059 genes.
Genes with only one paralog and genes that occurred in
multigene families were not distinguished here. All re-
sults reported are based on estimates of Ks.

Results
The Protein Contact Network Is Superficially Similar
to a Random Graph and Shows a PL Degree
Distribution

A description of the protein contact network’s glob-
al structure is useful. The network is best viewed as a
graph, a mathematical object consisting of nodes (ver-
tices) and edges. The nodes in the protein contact graph
represent proteins. Two proteins are linked by an edge
in this graph if they interact. The yeast protein contact
graph has n 5 985 nodes and k 5 899 edges (fig. 1).
According to the available evidence, only about 16%
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FIG. 1.—Graph representation of the yeast protein contact network. a, A two-dimensional drawing of the entire network using a spring
embedding algorithm provided by (Mehlhorn and Naher 1999). Each dot corresponds to a protein (node), and each line connecting two proteins
corresponds to a contact (edge) between proteins, as reported by Uetz et al. (2000). A group of proteins that interact only with each other and
with no other member of the network is called a component, or subnet. Notice the large number of small components surrounding the ‘‘giant’’
component in the center. b, The giant component of this graph consists of 466 proteins. c, A small section of the giant component, with gene
or open reading frame names shown next to each node.

Table 1
Comparison of Statistical Features Between Random Graphs and the Yeast Protein
Interaction Network

YEAST

RANDOM GRAPHS

ER
PL

(t 5 2.5)

Whole graph
Nodes . . . . . . . . . . . . . . . . . . . . . . . . . .
Degree. . . . . . . . . . . . . . . . . . . . . . . . . .
No. of components. . . . . . . . . . . . . . . .

985
1.83

163

984.02 (10.39)
1.85 (0.98)

108 (8)*

970.7 (81.57)
1.64 (1.76)

266.3 (30.6)*

Giant component
Nodes . . . . . . . . . . . . . . . . . . . . . . . . . .
Degree. . . . . . . . . . . . . . . . . . . . . . . . . .
Clustering coefficient (31023) . . . . . .
Characteristic path length . . . . . . . . . .

466
2.3

22
7.14

624.0 (38.7)*
2.07 (1.05)
0.59 (0.9)*

15.88 (1.76)*

336.9 (86)
2.50 (2.6)
4.02 (2.3)*
6.01 (1.14)

NOTE.—Numbers in parentheses are the standard deviations of descriptive graph statistics for 100 Erdõs-Rényi (ER)
and 100 power law (PL) random graphs. Random graphs were generated and statistics were calculated as described in
Materials and Methods. Asterisks indicate statistics whose values differ from those of the protein interaction network by
more than three standard deviations. The descriptive statistics of no other PL random graph with power 2 , t , 3 fit the
protein interaction network better than those displayed for t 5 2.5 (results not shown).

(985/6,279) of all yeast proteins are involved in protein-
protein interactions, and the analysis presented below
will restrict itself to these proteins. The degree, or con-
nectivity d, of a protein is the number of other proteins
it interacts with. A component, or subnet, of the graph
is a group of proteins that are connected to each other
but not to the rest of the network.

Does the protein contact network resemble any
graph with known structure? Perhaps the best candidate
for such a graph, because of its simplicity, is an ER
random graph. An ER random graph is a graph of n
nodes, where each pair of nodes is equally likely to be
connected by one of k edges. Indeed, visual inspection
of the network shows a feature very typical of random

graphs (Bollobás 1985). It has many (163) subnets in-
volving few proteins, and one ‘‘giant’’ component with
many (466) proteins (fig. 1). Table 1 shows, however,
that several descriptors of graph structure differ signif-
icantly between the protein interaction network and an
ER random graph. Figure 2a compares their degree dis-
tributions. It demonstrates that the protein network dif-
fers in both of these distributions from an ER random
graph. A conspicuous feature of the network’s degree
distribution, P(d), is that it is consistent with a PL, i.e,
P(d) } d2t (t ø 2.5; fig. 2a, inset), whereas ER random
graphs have Poisson-distributed degree (Bollobás 1985).
Because the protein interaction network is a small graph,
not much statistical confidence can be placed in the ex-
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FIG. 2.—The yeast protein contact network and random graphs.
Comparison of the yeast protein contact network (n 5 985 nodes, k
5 899 edges) with random graphs. Data shown are means and standard
deviations over 100 random graphs. a, Distribution of the degree (num-
ber of contacts or neighbors) in ER random graphs of n 5 nr 2 n0 5
985 nodes, and kr 5 899 edges (see Materials and Methods). The
protein contact network has an excess of proteins with degree 1, but
fewer proteins with a higher degree than the ER random graph. Inset:
log-log distribution of degrees in the protein contact network. The
degree distribution of power law (PL) random graphs was generated
according to this observed exponent. b, Histogram of component sizes
for protein network, ER random graphs as in a, and PL random graphs
with power t 5 2.5. Values shown on the y-axis are the numbers of
components in each component size bin shown in the uppermost row
of values on the x-axis (nodes per component: 1–2, 3–4, 5–6, etc.).
The lower rows of values on the x-axis correspond to the (mean) values
shown on the y-axis.

act value of the calculated exponent. Also, the statistical
structure of the protein network is constrained by more
than just its PL degree distribution. This is evident from
a comparison of its features with those of a PL random
graph with a PL degree distribution (t 5 22.5; fig. 2b
and table 1). The observed PL is nevertheless remark-
able in the context of recent studies showing that met-
abolic networks (Fell and Wagner 2000; Jeong et al.
2000; Wagner and Fell 2001), as well as a variety of
other unrelated graphs (Barabasi and Albert 1999), show
such a degree distribution. One key difference of met-
abolic networks is that the protein interaction network
is not a connected graph.

Do Genes in the Protein Network Differ
Systematically in Their Propensity to Duplicate?

The effects of a change in gene dosage might be
more severe for genes with many interaction partners
(high degree). Thus, an attempt was made to determine
whether genes in the protein network with paralogs any-

where in the genome had a lower degree than single-
copy genes. The mean degrees for the two classes of
genes were d 5 1.93 (standard error s 5 0.086; n 5
568) and d 5 1.63 (s 5 0.074; n 5 431), respectively.
Thus, although the difference was slight, genes with du-
plicates appeared more highly connected (F 5 4.81; P
5 0.03). The reason is unclear. This difference in degree
was not significant (F 5 0.076; P 5 0.78) if more close-
ly related duplicates (Ks , 1) were considered (duplicate
genes: mean d 5 1.87, s 5 0.26, n 5 53; single-copy
genes: mean d 5 1.8, s 5 0.058, n 5 946).

It is conceivable that the size of the subnet a gene
is part of influences its propensity to undergo duplica-
tions. For genes found outside the largest component of
the network, there were mean component sizes of 6.34
(s 5 0.62) and 6.49 (s 5 0.56) for single-copy genes (n
5 191) and duplicated genes (n 5 249), respectively, a
difference that is not statistically significant (F 5 0.03;
P 5 0.86). This did not change if only duplicates with
Ks , 1 were considered (results not shown).

Evolution of Shared Interaction Partners Among
Closely Related Proteins

Figure 3 illustrates the effect of a gene duplication
on gene products involved in protein interactions. Short-
ly after the duplication, the products of both duplicated
genes will have identical interaction partners. Over time,
either gene may gain new interaction partners or, per-
haps more likely, lose one or more of its interaction
partners. The number of shared interactions might be
taken as a crude measure of the overlap in the two
genes’ functions. Eventually, duplicate genes may not
interact at all with any of the proteins that they inter-
acted with before duplication, or they may even cease
to engage in protein-protein interactions. At least two
evolutionary questions can be posed in this context.
First, on what timescale does this divergence take place?
Second, do most gene duplicates eventually lose all
common interactions, or do they retain some common
interactions indefinitely? Because absolute duplication
time estimates are unavailable for most yeast gene du-
plications, divergence estimates among duplicates here
are based on the fraction Ks of synonymous substitutions
per synonymous site (Li 1997). Divergence among syn-
onymous sites is a better indicator of relative times since
duplication than many other distance measures between
DNA or protein sequences, partly because these sites are
under fewer evolutionary constraints than are nonsynon-
ymous sites. The rate of spontaneous mutations per base
pair and per round of DNA replication for yeast (2.2 3
10210) is similar to those of Drosophila (3.4 3 10210)
and mice (1.8 3 10210; Drake et al. 1998). Based on
this observation, and in the absence of measurements of
the rate of synonymous substitutions for yeast, it is as-
sumed here that the rate of synonymous substitutions is
similar as well. Both mammals and drosophilids are taxa
for which rates of synonymous substitutions are known
for a variety of genes (Li 1997). Based on this infor-
mation, the yeast rate is assumed to be the average rate
of mammals (3.5 substitutions per site per billion years)
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FIG. 3.—The effect of gene duplications on gene products that interact with proteins. Shortly after a gene duplication, the products P and
P* of the duplicate genes will interact with the same proteins. Eventually, some or all of the common interactions will be lost, and new
interactions may be gained by either protein. In the rightmost panel, protein P has lost one interaction and gained a new interaction partner,
whereas protein P* has lost two interactions. If the number of common interaction partners is taken as a measure of functional overlap, then
one of the functions of P is also covered by P*, and vice versa.

FIG. 4.—Gene duplicates in the same subnet. a, Histogram of the
fraction of duplicate genes whose products have at least one interacting
protein in common as a function of Ks, the fraction of synonymous
substitutions per synonymous site (Li 1997). Gene pairs were grouped
according to their Ks values into bins of width 0.5 whose lower bound-
aries are indicated on the x-axis. The horizontal line labeled ‘‘random
expectation’’ indicates the estimated probability (0.007; s ø 2.6 3
1023) that two proteins chosen at random from the entire network share
an interaction partner. This estimate was obtained numerically by ran-
domly choosing 1,000 pairs of proteins from the network. Duplicate
gene pairs whose products interact with each other are included in the
values shown here. Asterisks above a bar indicate that the number of
duplicates with shared interactions is significantly different from the
random expectation as assessed by a x2 test. The total numbers of gene
pairs in each bin are, from left (Ks , 0.5) to right (Ks , 5), 7, 5, 24,
91, 100, 69, 51, 21, 12, 5, and 2. b, Mean and standard deviation of
path lengths among products of duplicate genes in the same component
as a function of Ks. The solid and dotted horizontal lines indicate mean
(4.28) and standard deviation (3.37) in path lengths between two pro-
teins chosen at random from the same subnet within the protein contact
graph, as estimated by choosing 1,000 protein pairs at random. Only
duplicate genes with Ks , 0.5 show path lengths statistically distin-
guishable from that of two randomly chosen proteins. The total number
of gene pairs in each bin is the same as that shown in the legend to
figure 5.

and Drosophilids (15.4 per billion years; Li 1997). This
yields Ks 5 9.45 per site per billion years. A Ks 5 1
between two genes would then indicate that approxi-
mately 100 Myr have passed since their duplication.
This estimate is consistent with the evolutionary dis-
tance (mean Ks 5 1.66; s 5 0.94) between 390 genes
duplicated in an ancient yeast genome duplication event
estimated to have occurred less than 150 Myr ago
(Wolfe and Shields 1997).

Two cautionary notes on the use of Ks are in order.
Estimates of Ks have substantial margins of error, es-
pecially for the large values of Ks studied here, and their
interpretation must be approached with great caution.
This problem is alleviated by the fact that these esti-
mates are used only for a coarse binning of proteins
according to evolutionary distance, and not for any pre-
cise estimate of duplication age. While the number of
nonsynonymous substitutions at nonsynonymous sites,
Ka, is generally much smaller than Ks and could thus be
estimated more accurately, it confounds highly con-
served ancient duplicates and recent duplicates. This is
why it is not used here. A second note of caution con-
cerns the substantial variation in rates of synonymous
substitutions across genes. In microbes, the most prom-
inent cause of such variation is codon usage bias of
highly expressed genes. Two factors make it unlikely
that biased codon usage compromises the analysis car-
ried out here. First, the genes analyzed here have a gen-
erally low codon bias index (Bennetzen and Hall 1981;
Costanzo et al. 2000) of 0.11 (s 5 0.17). Only 3.9% of
them have codon bias indices greater than 0.4, indicating
moderate to high expression. Second, high codon usage
bias slows the rate of synonymous substitutions. If genes
with high codon usage bias contributed significantly to
the evolution of the yeast protein interaction network,
they would render the estimates reported here conser-
vative. That is, the network would evolve even faster
than estimated below.

How does the fraction of interaction partners shared
by duplicate genes evolve? Figure 4a shows the fraction
of duplicate genes with shared interaction partners as a
function of Ks. The line labeled ‘‘random expectation’’
indicates the probability that two proteins share an in-
teraction partner if the two proteins are picked at random
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FIG. 5.—Fraction of duplicates in the same subnet. Shown is a
histogram of the fraction of duplicate genes whose products are part
of the same subnet as a function of Ks, the fraction of synonymous
substitutions per synonymous site (Li 1997). Gene pairs were grouped
according to their Ks values into bins of width 0.5 whose lower bound-
aries are indicated on the x-axis. The numbers of gene pairs in each
of the bins are (from left to right on the x-axis) 5, 3, 8, 26, 31, 31,
15, 5, 1, 0, and 0. The horizontal line labeled ‘‘random expectation’’
indicates the estimated probability (0.231; s ø 0.013) that two proteins
chosen at random from the entire network are part of the same subnet.
This estimate was obtained numerically by randomly choosing 1,000
pairs of proteins from the network. Asterisks above a bar indicate that
the number of duplicates in the same subnet is significantly different
from the random expectation as assessed by a x2 test. Due to the lim-
ited number of genes, interpretation of these results has to be ap-
proached cautiously. However, even when bins with fewer than five
genes are discounted, it becomes clear that for Ks . 1.5, duplicated
gene pairs appear to have been reassorted nearly randomly among the
subnets of the protein contact graph.

from the protein interaction network. Asterisks indicate
whether the number of duplicates with shared interac-
tions is significantly different from the random expec-
tation as assessed by a x2 test. Strikingly, already for
0.5 , Ks , 1, only 20% of duplicate gene pairs share
an interaction partner. That is, if one applies this crite-
rion of functional overlap, 80% of genes have no func-
tional overlap with their duplicates approximately 100
Myr after the duplication. For Ks . 2, the probability
that two gene duplicates share an interaction partner ap-
proaches the value expected for randomly chosen gene
pairs.

A complementary way of studying how fast gene
duplicates diverge is to study the length of the path that
separates them in the protein contact network. Figure 3
illustrates that either of two proteins with common in-
teraction partners can be reached from the other protein
via a path of no more than two edges, i.e., their path
length is at most 2. Figure 4b shows the mean and stan-
dard deviation in path lengths between duplicate pro-
teins as a function of Ks. It shows that the mean path
length between products of gene duplicates is less than
the mean path length between randomly chosen proteins
only for Ks , 0.5.

Distribution of Duplicate Gene Products Among
Subnets

Proteins that are part of the same subnet may have
related biological functions in the sense that they act in
the same cellular process. If so, then the function of
gene duplicates that are part of the same subnet could
be called conserved in this crude sense. Figure 5 shows
a histogram of the fraction of duplicates that are part of
the same subnet as a function of Ks. For Ks . 1.5, the
probability that two duplicates are part of the same sub-
net approaches the probability that two randomly chosen
proteins are part of the same subnet. Thus, products of
duplicate genes do not remain associated with the same
group of interacting proteins.

In sum, duplicate gene products generally do not
retain common interaction partners long after duplica-
tion. Only 57% (4/7) of the most closely related dupli-
cate gene pairs (0 , Ks , 0.5) for which both genes
interact with other proteins share any protein interaction
partners (fig. 4). For all 380 gene pairs with Ks . 0.5,
the fraction of duplicate partners with shared interac-
tions is ,20%. For Ks . 1.5, it dwindles to a value
close to the expected number of shared interactions be-
tween two proteins chosen at random from within the
network. A similar picture emerges for the fraction of
proteins that are part of the same subnet. Thus, dupli-
cated gene pairs appear to be reassorted nearly randomly
within the protein interaction network. Conserved inter-
actions indicating possible redundancy are the exception
rather than the rule.

The Rate of Interaction Loss

Because many characterized protein-protein inter-
actions are responsible for crucial cellular functions,
they might not change much over time. However, the

rapid divergence of common interaction partners after
gene duplication shows otherwise. Under the assump-
tion that this change is caused predominantly by loss of
interactions, one can also put a lower bound on the rate
at which interactions are lost. There are 127 duplicate
gene pairs with Ks , 2 where both duplicates engage in
protein-protein interactions. Assuming that all of the di-
versification observed between these duplicates is due
to lost interactions, one arrives at a total estimate of 920
interactions immediately after duplication, 429 of which
have been lost since. This amounts to a lower bound of
(429/920)(1/200) 5 2.3 3 1023/Myr for the probability
that a protein interaction is lost. Notice that the actual
rate of interaction loss may be much higher, because (1)
interactions lost in both duplicate genes cannot be ob-
served and are not accounted for, and (2) many dupli-
cates in this set are younger than 200 Myr. Also, most
interactions may be lost shortly after duplication. A very
similar estimate is obtained if one corrects for multigene
families, admitting only one gene pair per gene family
(42 gene pairs, for which 140 of 318 interactions have
been lost since duplication, leading to a lower bound of
2.2 3 1023 lost interactions per million years).

The Evolution of Self-Interactions and New
Interactions

Forty-three proteins are reported to interact with
themselves (‘‘self-interactors’’), 16 of which have one
or more paralogs in the yeast genome. There are also
20 paralogous gene pairs whose products interact with
each other. Figure 6a illustrates the two different routes
by which self-interactions and cross-interactions among
duplicate genes may evolve. First, a gene product may
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FIG. 6.—Self-interactions and interactions between products of
duplicate genes. a, Self-interactions of genes with paralogs and inter-
actions between duplicate genes may have evolved by two different
routes. First, a gene product may have been a self-interactor before
duplication. In this case, observed self-interactions and interactions be-
tween paralogs are a reflection of self-interaction before duplication.
Second, the interactions may have evolved de novo after the duplica-
tion. b, Number of paralogous gene pairs observed in the yeast protein
interaction networks with the indicated combination of self- and cross-
interaction. The last category of five duplicates, in which only one of
the paralogs is self-interacting, involves 16 paralogous gene pairs, but
11 of them are redundant. This is because the product of a self-inter-
acting gene, TPK3 (YKL166C), a catalytic subunit of the cyclic AMP-
dependent protein kinase, has 12 paralogs that are not self-interactors
and thus accounts for 12 of the 16 gene pairs. Ks , 5 for all reported
gene pairs. Notice the abundance of duplicate pairs without self-inter-
actions (13/25) and the small number of gene pairs (1/25) where both
genes are self-interacting.

have been a self-interactor before duplication. In this
case, observed self-interactions and interactions between
paralogs are most likely a remnant of self-interaction
before duplication. Second, the interactions may have
evolved de novo after the duplication. Figure 6b shows
the number of paralogs in yeast with Ks , 5 and the
indicated combination of self-interactions and cross-in-
teractions. The data set is too small to allow rigorous
statistical analysis, but there are at least two conspicuous
features. First, there is only 1 out of 25 paralogous pairs
for which both proteins show self-interaction. It is not
obvious why two duplicates should independently lose
the ability to interact with themselves so frequently. Sec-
ond, for 13 out of 21 paralogous pairs with interactions
between the duplicates, neither duplicate shows self-in-
teractions. Thus, there appears to be an abundance of
paralogous pairs whose features are more easily ex-
plained if one assumes that interactions between dupli-
cates evolve de novo at an appreciable rate.

To obtain a crude estimate of how rapidly new pro-
tein interactions might evolve, assume that among the
20 observed interactions between duplicates, only those
13 interactions where neither paralog self-interacts have
evolved de novo after the duplication (fig. 6b). These

13 genes are among 9,059 duplicate gene pairs with Ks
, 5. Thus, in the time it took to accumulate five syn-
onymous substitutions per synonymous site, a fraction
13/9,059 5 1.44 3 1023 of gene products evolved new
interactions. This yields more than 2.88 3 1026 new
interactions per protein pair per million years, if a Ks 5
1 corresponds to 100 Myr. There are approximately n 5
6,280 open reading frames in the yeast genome, with
n(n 2 1)/2 5 1.97 3 107 possible pairwise interactions.
Extrapolating the above estimate to the entire yeast pro-
teome would thus yield (1.97 3 107)(2.88 3 1026) 5
56.7 newly evolved interactions per million years. The
multiple caveats to this calculation include uncertainty
in the precise number of newly evolved interactions,
problems with estimating large Ks values due to biases
in correcting for multiple substitutions (Li 1997), and
the assumption that all yeast proteins can evolve inter-
actions. Also, many gene pairs in the data set have Ks
, 5, suggesting that the actual rate of evolution of new
interactions is higher. However, even with a possibly
large margin of error, the above calculations illustrate
that the number of interactions evolving de novo is not
negligible.

Discussion
Caveats

Large-scale two-hybrid assays are subject to erro-
neous identification of protein-protein interactions.
However, this will not affect the interpretation of the
results as long as the two-hybrid assay is not subject to
systematic errors. Whether such errors occur awaits con-
firmation of the results via other biochemical techniques.
Experimental limitations introduce another source of er-
ror. To make the large scale study of yeast protein in-
teractions feasible, the number of analyzed interactions
was limited to 24 per DNA-binding domain fusion (Uetz
et al. 2000). This is, however, not likely to affect the
overall result of this analysis, as the mean number of
interaction partners per protein is only 1.83 (s 5 1.85).
Extremely ‘‘sticky’’ proteins are thus probably rare.
They would not compromise the statistical signal ob-
served here.

Gene functions comprise much more than protein-
protein interactions, as is evident from the fact that only
16% of all yeast proteins interact with other proteins.
Thus, the value of this analysis would clearly be
strengthened if similar results emerged from studies us-
ing complementary technologies such as microarray
analysis of transcriptional regulation (DeRisi, Iyer, and
Brown 1997). The opportunity to use genomic technol-
ogy to analyze the evolution of many duplicate gene
pairs clearly comes at the price of focusing on merely
one aspect of function. Consequently, interpretation of
the results reported here would have been difficult if
protein-protein interactions had been extensively con-
served after gene duplication. This is because other as-
pects of gene function, such as catalytic activity and
spatiotemporal expression pattern, might still have di-
verged. However, exactly the opposite is observed. Even
just considering protein-protein interactions, one can
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conclude that diversification must be extensive after du-
plication. This might be seen as a contradiction to the
observation that up to 40% of synthetic null mutations
in yeast open reading frames show weak phenotypic ef-
fects (Smith et al. 1996). Many of these mutations in-
volve duplicate genes. However, although widely as-
sumed, redundancy among duplicate genes may not be
the cause of this phenomenon (Wagner 2000).

How Do Most Duplicate Gene Products Arrive at
Different Subnets?

Most gene duplicates eventually reside in different
subnets of the protein interaction graph. If the de novo
evolution of new interactions is extremely rare, then
only new gene duplications would replenish lost inter-
actions. In this case, duplicate genes would reside in
different subnets, because interactions are constantly
lost. Originally connected groups of proteins would be-
come disconnected, and the protein interaction network
would become increasingly fragmented. However, the
observed patterns of interaction between duplicate gene
products (fig. 6) suggest that de novo evolution of new
interactions does occur. If its rate is sufficiently high,
then duplicate gene products may reside within different
subnets because new interactions evolved between one
of them and gene products in another subnet. The role
of interaction loss would then be primarily one of sev-
ering existing ties between duplicate gene products.
Whether the rate at which new interactions evolve is
sufficiently high for this second scenario is an open
question.

Interaction Turnover in the Protein Network

Not all protein pairs may be able to engage in phys-
ical interactions, and some existing interactions might
be absolutely indispensable for cellular function. How-
ever, a significant rate of interaction turnover is evident
in the protein interaction network. Based on observed
interactions between duplicate proteins without self-in-
teraction (fig. 6), it was crudely estimated above that
new interactions evolved at a rate of 2.88 3 1026 per
protein pair per million years. This may seem small.
However, if extrapolated to all 1.97 3 107 possible pair-
wise interactions in the yeast proteome, one arrives at
an estimate of 57 newly evolving interactions per mil-
lion years. Even when restricting oneself to the 985 pro-
teins known to interact with other proteins, one arrives
at an estimate of (2.88 3 1026)(4.84 3 105) ø 1.4 newly
evolved interactions per million years. The true value is
likely to lie somewhere in between.

Based on the assumption that the divergence in pro-
tein interactions after gene duplication is largely due to
interaction loss, one can put a lower bound on the rate
at which interactions get lost at 2.2 3 1023 per inter-
action per million years. If a comparable rate holds for
interactions between single-copy genes, then 50% of all
interactions get lost every 300 Myr. Replenishment of
lost interactions would take place through gene dupli-
cation and de novo evolution of interactions. Even in
the unlikely case that all loss of interaction is restricted

to duplicated genes, the rate of interaction turnover
would be substantial. This is because the majority (57%
for Ks , 5) of all genes in the network have one or
more paralogs.

Outlook

The observations made here stimulate a multitude
of questions regarding their evolutionary significance. Is
the change in network structure driven by neutral evo-
lution or by natural selection for advantageous interac-
tion patterns? Similarly, are there many alternative con-
figurations of the network that perform the network’s
function equally well? Are many protein-protein inter-
actions of little functional significance, or are most of
them critical? Does the change in network configura-
tions over time reflect different environments or differ-
ent adaptations that the organism evolved at different
times? Can one understand the network’s global struc-
ture from a few key parameters, such as the rate of gene
duplications and the rate of interaction loss? Perhaps
genomic technologies, focusing on the big picture of
gene functions, cannot determine the ‘‘blueprint’’ of or-
ganismal design. At the very least, however, they open
new levels of inquiry into the evolution of this design.
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