На главную
Библиотека сайта
История развития жизни
Креационизм
Ссылки
Гостевая




М.В.Плетников
перевод с английского Science, 1995,
Vol. 270, N 5234, pp. 230-232.

Создание искусственных органов и тканей

Создание искусственных органов и тканей оформилось в самостоятельную отрасль науки около десяти лет тому назад. Первые достижения этого направления - создание искусственной кожи и хрящевой ткани, образцы которых уже проходят первые клинические испытания в центрах трансплантации. Одно из последних достижений состоит в конструировании хрящевой ткани, способной к активной регенерации. Это действительно огромный успех, поскольку поврежденная суставная ткань не регенерирует в организме. В клиниках США ежегодно оперируют более 500 тыс. больных с повреждениями суставного хряща, но подобное хирургическое вмешательство лишь на короткое время облегчает боль и улучшает движения в суставе. Ученые из Гётеборгского университета в Швеции экстрагировали хондроциты (клетки хряща) из суставов 23 пациентов, вырастили культуру клеток, которая образовала хрящевую ткань, а затем имплантировали ее в поврежденный коленный сустав. Результат оказался превосходным: у 14 из 16 пациентов было отмечено практически полное замещение поврежденного хряща новой тканью в месте ее имплантации. Выращивание хрящевой ткани занимает, к сожалению, много времени - несколько недель, поэтому ученые пытаются разработать методики более быстрого получения искусственных тканей. Например, группа экспериментаторов из биотехнологической компании “Organogenesis” провела выращивание пленки искусственной кожи на матриксе из природного коллагена, что позволяет практически сразу использовать эту новую ткань в клинике. При клиническом испытании нового кожного трансплантата было показано, что он улучшает (не менее чем на 60% по сравнению с обычными материалами) заживление венозных язв и кожных повреждений. Однако кожа и хрящ - ткани, состоящие из одного или двух типов клеток, и требования к структуре основы, предназначенной для их выращивания в искусственных условиях, относительно невысоки.

Со многими же другими органами дело обстоит гораздо сложнее. В настоящее время предпринимаются попытки выращивания в лабораторных условиях печени. Но печень - сложно устроенный орган, состоящий из разных типов клеток, обеспечивающих очищение крови от токсинов, преобразование поступивших извне питательных веществ в усваиваемую организмом форму и выполняющих целый ряд других функций. Поэтому создание искусственной печени требует гораздо более сложной технологии: все эти разнообразные типы клеток должны быть размещены строго определенным образом, то есть основа, на которой они базируются, должна обладать высокой избирательностью. Создание искусственных органов и тканейС этой целью на такую синтетическую основу наносятся молекулы, обладающие свойствами клеточной адгезии и межклеточного узнавания - функциями установления специфических межклеточных связей в организме. История создания такой подложки для клеток печени может служить иллюстрацией преимуществ комбинированной технологии. Например, исследователям из Массачусетского технологического института удалось создать подложку, на которой закрепляются только клетки-гепатоциты. Хорошо известно, что клетки этого типа выполняют в организме больше метаболических функций, чем любые другие. Одной из таких функций является удаление из кровеносного русла поврежденных белков. Гепатоциты узнают эти белки по определенным углеводным последовательностям, которые и “маркируют” их как брак. Исследователи синтезировали молекулы с такой последовательностью звеньев и “прикрепили” их к искусственному полиакриламидному полимеру, полагая, что эти “приманки” будут избирательно “привлекать” гепатоциты. Действительно, гепатоциты узнавали метки и задерживались на поверхности полимера. Однако впоследствии оказалось, что полиакриламид не может служить подходящим материалом для искусственной печени, поскольку вызывает сильную иммунную реакцию со стороны организма. Необходимо было искать какой-то другой полимер, который бы не отторгался организмом, но при этом и не адсорбировал бы различные белки, которые, осев на полимере, тут же начинали бы привлекать все типы клеток без разбора. В конце концов старания ученых увенчались определенным успехом. Им удалось синтезировать сетчатую подложку из полиэтилен- оксида (ПЭО), не вызывающего иммунной реакции и не адсорбирующего белки. ПЭО представляет собой молекулу звездчатой формы, лучи которой расходятся в разные стороны от плотного центрального ядра. Когда молекулы ПЭО связываются между собой, концы лучей каждой “звезды” свободно плавают в водном растворе. При этом они несут на себе реактивные гидроксильные группы, к которым и прикрепляют углеводные “приманки” для гепатоцитов. Было показано, что при добавлении в такой раствор гепатоцитов крысы они тут же связываются с углеводами и закрепляются на сетчатой подложке, в то время как фибробласты, внесенные в раствор, на полимере не оседают. Таким образом, ученым посчастливилось разрешить одну из самых больших проблем в создании искусственных органов: сконструировать высокоспецифический клеточный акцептор. Следующим этапом стало формирование трехмерной структуры сетчатой подложки. Здоровая печень состоит из массы клеток, пронизанных сложной сетью кровеносных сосудов. Для нормальной работы печени различные типы клеток должны быть расположены по отношению друг к другу в определенном порядке. Разработав способ укладки полимера (полиактиновой кислоты) на тончайшую бумажную основу под управлением компьютера, что позволяет в дальнейшем конструировать уже трехмерную архитектуру органа, исследователи теперь бьются над проблемой соединения с трехмерной структурой нового полимера молекул ПЭО, несущих “приманки”. В будущем они надеются присоединить к полимеру и метки другого типа, например антитела, привлекающие к себе клетки, образующие желчные протоки. Наконец, предполагается использование аминокислот - глютаминовой, аспарагиновой и аргинина - для формирования специфического эндотелиального слоя печени. Так постепенно, шаг за шагом, ученые надеются создать полноценную искусственную печень. Гибридные основы-подложки хорошо зарекомендовали себя и в экспериментах по “выращиванию” нервных волокон. В этом случае в качестве подложки оказался особенно эффективен тефлон - материал, совершенно безвредный для организма. Соединение тефлоновой сетки с молекулами ламинина посредством модифицированных ионизированным газом атомов никеля представляет собой, по мнению исследователей, весьма перспективную основу, на которой может происходить рост отростков нервных клеток. Ламинин в данном случае выполняет функцию регуляции и направления роста нервов. Следующим шагом, приближающим клиническое применение индуцированного роста предназначенных для трансплантации нервов, должно стать изготовление специальных направляющих трубочек, которые можно было бы размещать в организме вдоль поврежденных нервных волокон. Тефлон также давно используют в искусственных кровеносных сосудах. Однако до сих пор из него производят только широкие (более 6 мм в диаметре) сосуды, так как сосуды меньшего диаметра через 1-2 года после имплантации закупориваются тромбоцитами и гладкомышечными клетками. Этого не происходило бы, если бы структура стенок имплантированного сосуда была похожа на выстилающий эпителий настоящих вен и артерий. картинка1Проблему можно решить путем нанесения на полимер естественных эпителиальных клеток, образующих гладкую выстилку внутренних стенок сосудов, к которой не прилипают тромбоциты и гладкомышечные клетки. Создание такого искусственного эпителия и является основной проблемой конструирования кровеносных сосудов. К слову сказать, аналогичное налипание клеток, и как следствие, закупоривание сосудов, происходит и в самом организме из-за атеросклеротического изменения эпителия. При решении этой задачи, как и при попытках вызвать направленный рост нервных волокон, ученые пользуются “услугами” белков межклеточной адгезии и внеклеточного матрикса: фибронектина и ламинина. Среди органов и тканей, которые в настоящее время интенсивно исследуются с целью их биотехнологического воссоздания, можно отметить также костную ткань, сухожилия, кишечник, сердечные клапаны, костный мозг и трахею. Помимо работ по созданию искусственных органов и тканей человеческого организма ученые продолжают разрабатывать и методы вживления в организм больных диабетом людей клеток, продуцирующих инсулин, а людям, страдающим болезнью Паркинсона, - нервных клеток, синтезирующих нейромедиатор дофамин, что позволит избавить пациентов от ежедневных утомительных инъекций.