На главную
Библиотека сайта
История развития жизни
Креационизм
Ссылки
Гостевая




i123456789101112131415161718192021222324252627282930313233343536373839

Глава 33

Онтогенез и филогенез

Эмбриология издавна тесно связана с эволюционной теорией, Дарвин (1859*) использовал характерные черты развития зародышей как одно из доказательств эволюции. Геккель (Haeckel, 1866*) выявил связь эмбриологии с филогенией. Многие эволюционисты XX в. досконально рассматривали связь между онтогенетическим развитием и филогенетическим изменением (например, Huxley, 1932, 1942; Goldschmidt, 1940; Rensch, 1947, 1959; De Beer, 1951; Stebbins, 1950, 1974; Waddington, 1957; Lovtrup, 1974; Gould, 1977*).

В подходах к этой теме можно выделить два направления: сравнительно-эмбриологическое (например, de Beer, 1951; Lovtrup, 1974; Gould, 1977*) и морфогенетическое (например, Waddington, 1957; Raff, Kaufman, 1983*). Необходимо разрабатывать оба эти направления.

Педоморфоз

Филогенетическое изменение, наблюдаемое во взрослом организме, можно рассматривать как результат последовательно модифицированных онтогенезов (Garstang, 1922; de Beer, 1951; Lovtrup, 1978*).

Издавна различают несколько типов изменений онтогенеза: пeдоморфоз, фетализация, неотения, акселерация и т. п. Классификацию этих типов дают в числе прочих Ренш (Rensch, 1959*), Лёвтрап (Lovtrup, 1974*) и Гулд (Gould, 1977*). Предложенная Гулдом (Gould, 1977*) классификация типов онтогенетических изменений и их филогенетических результатов разъясняет участвующие в этом процессы и терминологию, которая порой неясна.

При педоморфозе взрослые потомки сходны с ювенильными стадиями предковюй формы. Такой результат наблюдается в тех случаях, когда в процессе развития половое созревание происходит быстрее, чем соматический рост. К этому общему результату могут привести два различных процесса и соответственно следует различать педоморфоз двух типов, а именно — прогенез и неотению (в строгом смысле). Абсолютное ускорение созревания, не сопровождающееся сравнимым ускорением соматического роста, приводит к прогенезу. Замедление соматического роста без сравнимого замедления созревания приводит к неотении в строгом смысле (Gould, 1977*).

Как полагает Гулд, прогенез, вызывающий размножение на ранних стадиях развития, представляет собой стратегию, успешную в средах, для которых характерен r-отбор, т. е. во вновь заселяемых местообитаниях. В отличие от этого неотения, требующая длительного периода роста, легче возникает в стабильных биотических сообществах, для которых характерен k-отбор (Gould, 1977*).

Неотения у животных широко изучалась и обсуждалась; наиболее известные примеры относятся к хвостатым амфибиям (Ambystoma и др.) и приматам, в том числе к человеку. Так, по признакам лица у взрослого человека гораздо больше сходства с ювенильным шимпанзе, чем с половозрелым. Отсутствие волосяного покрова — другой неотенический признак человека. Одним из примеров прогенеза служат бескрылые тли.

Что касается растений, то имеются данные, что некоторые, из главных отличительных признаков покрытосеменных, относящиеся к цветкам, листьям, мужским и женским гаметофитам, являются неотеническими (Тахтаджян, 1959a, b, 1961, 1976, 1983*). В пределах покрытосеменных древесина таких производных жизненных форм, как однолетники, многолетники с короткой продолжительностью жизни и растения с cуккулентным стеблем, носит педоморфный характер по сравнению с соответствующей тканевой системой у деревянистых двудольных (Carlquist, 1962, 1975*).

Рекапитуляция

Между изменениями в онтогенезе и в филогенезе существует параллелизм. Геккель (Haeckel, 1866*) положил это в основу своего знаменитого закона «Онтогенез есть повторение филогенеза». Геккелевская теория (рекапитуляции широко обсуждалась (см. Garstang, 1922; Rensch, 1959; Lovtrup, 1978*) и нередко отбрасывалась, однако, как отмечает Лёвтрап (Lovtrup, 1978*), в ней есть доля истины.

Филогенетические изменения иногда происходят путем прибавления к онтогенезу предков новых терминальных стадий (Rensch, 1959; Gould, 1977; Lovtrup, 1978*). Так, у саргана (Веlone) развились очень длинные челюсти, похожие на щипцы, благодаря продлению онтогенеза по сравнению с такими более консервативными родственными формами, как Atherina (Rensch, 1959*). Добавление новых терминальных стадий может сопровождаться ускорением развития, так что общая продолжительность онтогенеза остается более или менее постоянной (Gould, 1977*).

В тех случаях, когда имеют место такого рода онтогенетические изменения, онтогенез более продвинутой формы действительно проходит через стадии, соответствующие взрослым формам её филогенетических предков. В таких случаях можно говорить, что онтогенез повторяет филогенез.

Как отмечает Лёвтрап (Lovtrup, 1978*), закон рекапитуляции оказывается справедливым, когда эволюционное изменение выражается в терминальных надставках к процессу развития. Это особый, по-видимому, достаточно обычный, но не универсальный случай. Поэтому заключение Геккеля не является всеобщим законом, но вместе с тем оно не отвергнуто и остается полезным обобщением.

Параллелизм между онтогенетическими и филогенетическими изменениями был давно отмечен Бэром (Von Baer, 1828*), который сформулировал и истолковал его иначе. Концепция Бэра получила широкое признание.

Бэр (Von Baer, 1828*) отмечает, что сходство между зародышами родственных групп больше, чем между взрослыми особями этих же групп. Развивающийся зародыш проходит через ряд стадий, отражающих план строения тех различных групп, к которым он принадлежит, и притом в последовательности от более обширных групп к более подчиненным. В онтогенезе более общие признаки появляются раньше, чем более специальные; от признаков, характеризующих класс, семейство и род, развитие приводит к конечным видоспецифичным признакам (Garstang, 1922; Lovtrup, 1978*).

Концепция Бэра содержит в себе элемент рекапитуляции. Лёвтрап (Lоvtrup, 1978*) предлагает поэтому различать рекапитуляцию по Бэру и рекапитуляцию по Геккелю. Первая представляет собой более общую концепцию.

Лёвтрап (Lovtrup, 1978*) формулирует соотношение между онтогенезами в дивергентных филетических линиях следующим образам: «В процессе онтогенеза члены некой группы таксонов-близнецов следуют одним и тем же путем рекапитуляции вплоть до стадии их дивергенции на отдельные таксоны».

Относительные скорости роста

Морфологическая дивергенция между производной группой и её предком или между сестринскими линиями может вылиться, как мы видели, в онтогенетические различия, а последние в свою очередь — в различия по скоростям роста разных частей тела. Томпсон (Thompson, 1917, 1942, 1961*) использовал декартовы координаты для того, чтобы сравнивать дивергентные формы тела в родственных родах, принадлежащих к различным крупным группам животных: ракообразным, кишечнополостным, рыбам, рептилиям, птицам, млекопитающим. Примеры по рыбам показаны на рис. 33.1. Стандартный тип для каждой пары родственных форм изображен слева, а дивергентный, или «деформированный», — справа.

На рис. 33.1, А видно, что стандартный тип (слева) можно преобразовать в дивергентный тип (справа), повернув вертикальные оси на определённый угол. На рис. 33.1, Б связь дивергентного типа со стандартным можно выявить, переходя от прямоугольных координат к полярным. Другие способы преобразования показаны на рис. 33.1, В и Г.

Эти сравнения позволяют сделать вывод, что реальное филогенетическое изменение влечет за собой изменение относительных скоростей роста разных частей тела в процессе онтогенеза. Так, на рис. 33.1, В форма тела дивергентной взрослой особи сложилась в результате повышения по сравнению со стандартным типом скорости роста переднего конца тела и понижения скорости роста хвостовой части.

Дальнейшее развитие этих представлений воплощено в концепции аллометрического роста (Huxley, 1932; см. также Rensch, 1959*). Каждая часть тела имеет свою характерную и зачастую постоянную скорость роста в течение онтогенеза. Разные части тела нередко обладают различной скоростью роста. Соответственно пропорции тела детерминируются продолжительностью периода роста и размерами, достигаемыми на взрослой стадии.

Принцип аллометрии может быть распространен на сравнения между родственными видами или родами. Можно ожидать, что в родственных группах с различными размерами взрослых особей будут наблюдаться различные пропорции тела.

Рога у самцов оленя, например, обладают положительной аллометрией, так что с увеличением размеров тела увеличиваются и размеры рогов, причём не только абсолютно, но и по отношению к размерам тела. У мелких видов оленей рога очень небольшие, а у самого крупного из оленей современной эпохи — вымершего гигантского оленя Megaloceros giganteus — были чрезвычайно большие рога (Huxley, 1932; Simpson, 1949, 1967*).

Прогрессивное развитие рогов наблюдается у титанотериев — от раннего эоцена до раннего олигоцена, как показано на рис. 33.2 (Osborn, 1929*). У раннеэоценового титанотерия Eotitanops рогов не было (рис. 33.2, А). На лицевой части черепа средне- и позднеэоценовых титанотериев имелись небольшие костные бугры (рис. 33.2, В и В). Роговидные бугры средней величины имелись у раннеолигоценового рода Megacerops, a очень большие рога были у другого олигоценового рода, Вrопtotherium (рис. 33.2, Г).

Рис. 33.1. Сравнение формы тела у пар близких видов рыб с использованием декартовых координат. Для каждой пары слева изображен стандартный, а справа — «деформированный» тип. A. Argyropelecus olfersi (слева) и Sternoptyx diaphana (справа). Б. Scarus (слева) и Pomacanthus (справа). В. Polyprion (слева) и Pscudopriacantlius altus (справа). Г. Diodon (слева) и Orthagoriscus mola (справа), (D'Arcy Thompson, 1961.*)

Это направление эволюции можно объяснить в терминах аллометрических скоростей роста. Рога титанотериев обладают положительной аллометрией, т. е. их относительные размеры возрастают с увеличением абсолютных размеров. У эоценовых и олигоценовых титанотериев наблюдается увеличение размеров тела (рис. 33.2). Если размеры тела не достигали некоторой пороговой величины, то рога не развивались. У более крупных животных рога были очень велики. Отбор на увеличение общих размеров тела, очевидно, приводил к коррелированному возрастанию относительной величины рогов (Huxley, 1932; 1942; Stanley, 1974*).

Рис. 33.2. Эволюция рога у титанотериев. A. Eotitanops borealis (ранний эоцен). Б. Manteoceras manteoceras (средний эоцен). В. Protitanotherium emarginatum (поздний эоцен). Г. Brontotherium platyceras (ранний олигоцен). (Osborn, 1929.*)

Генетика развития

Генетика развития анализирует изменения, происходящие в процессе онтогенеза, и их филогенетические эффекты до более глубокого уровня причинности — до уровня генов. Как подчёркивали ранее Гексли (Huxley, 1932*) и Гольдшмидт (Goldschmidt, 1938*), многие гены достигают своих фенотипических эффектов, управляя скоростями процессов развития; это могут быть скорости роста, скорости синтеза ростовых веществ, сроки дифференцировки и т. п. Гены, регулирующие скорости, образуют промежуточное звено между отбором и филетическим изменением.

Классическим примером развития, контролируемого генами, служит форма плода у культурных сортов тыквы Cucurbita pepo (Sinnott, Hammond, 1930; Sinnott, 1936*). У разных сортов тыквы плоды имеют дисковидную, сферическую или продолговатую форму. Различные формы могут быть описаны через соотношения скоростей роста в ширину и в длину.

Относительные скорости роста по разным осям роста контролируются взаимодействиями между геном I и системой генов А—D. Действие некоторых аллельных форм генов А, В, С и D создаёт короткие продольные оси, что приводит к развитию дисковидных плодов. Доминантный аллель гена I действует в противоположном направлении, вызывая рост в длину. Между действием этих двух рядов генов существует равновесие. Несколько аллельных комбинаций, содержащих преимущественно гены, укорачивающие оси роста (например, AABBii), приводят к развитию дисковидных плодов. А генотипы, содержащие смесь генов, укорачивающих и генов, удлиняющих оси (например, AAccii), дают сферические плоды (Sinnott, Hammond, 1930*).

Многие гены активны только на той или другой стадии жизненного цикла. Это иллюстрируют гены, детерминирующие запасные белки в соевых бобах (Glycine max). Эти гены активны только на эмбриональной стадии. У взрослых растений они имеются, но неактивны (NRG Board, 1984*).

Регуляция

От концепции регуляции развития — один шаг до концепции регуляторных генов. В настоящее время обеим этим концепциям уделяется большое внимание при обсуждении онтогенеза и филогенеза. Эволюционное значение генетической регуляции развития отрицать невозможно.

Однако термин «регуляторный ген» в том смысле, в каком его попользуют в современной литературе, имеет более широкий смысл. Регуляторные гены в строгом смысле слова противопоставляют структурным генам. Структурные гены детерминируют синтез белков, будучи более или менее эквивалентны классическим генам, тогда как регуляторные гены контролируют действие структурных генов. Разделение генов на структурные и регуляторные возникло в результате исследований на бак териях, к которым оно применимо. В первоначальной форме его широко распространяли на высшие организмы, для которых оно непригодно.

Рассмотрим положение дел у высших растений. У них нет ни одного класса регуляторных генов. Регуляция обеспечивается гетерогенным комплексом контролирующих генов. В этот комплекс входят гены-ингибиторы, минус-модификаторы, системы оппозиционных генов, гетерохроматиновые блоки и контролирующие элементы (которые, возможно, представляют собой гетерохроматиновые блоки). Кроме того, у высших растений проводить различие между регуляторными и структурными генами невозможно. Некоторые типы контролирующих генов на самом деле являются структурными генами; хорошим примером служат ингибиторы (см. Grant, 1975*).

Поэтому, когда тот или иной автор, принимающий деление на структурные и регулятарные гены, приходит к заключению, что эволюция высших организмов зависит прежде всего от регуляторных мутаций и только во вторую очередь — от изменений структурных генов, это заключение не основывается на строгом анализе генетических элементов у эукаркот. Между тем именно такое заключение делают многие авторы (например, Wilson, 1975; King, Wilson, 1975; Bush, 1975; Gould, 1977*).

В ряде работ (например, Wilson, 1975; King, Wilson, 1975*) регуляцию развития объясняют также побочными эффектами хромосомных перестроек. Высказывается мнение, что изменения последовательности участков приводят к эволюционным изменениям, изменяя тип и характер онтогенетического развития. Это современная версия концепции «паттерн-эффекта» (Goldschmidt, 1940*), которая в свою очередь представляет собой расширение представлений об известном явлении эффекта положения.

Известные эффекты положения обычно бывают гибельными, и вряд ли их можно считать подходящим сырым материалом для эволюции. Кроме того, хромосомные перестройки обладают, помимо эффекта положения и другими генетическими эффектами. Вдобавок эволюция некоторых групп происходила без заметных хромосомных перестроек (например, сем. Fagaceae; см. Grant, 1981*). Положение о том, что «паттерн-эффект» играет важную роль в эволюции, регулируя развитие, допустимо и даже правдоподобно, однако оно требует гораздо больше доказательств, чем имеется в настоящее время.

Канализация

Процесс развития канализирован; он устойчив к внешним давлениям, которые могли бы заставить его отклониться от нормального пути (Waddington, 1957; Whyte, 1965*), Если фенотипический продукт развития адаптивен, то можно предполагать, что отбор благоприятствовал канализированым генотипам, т. е. генотипам, которые приводят к развитию одного и того же признака в различных средах.

Таким образом, канализация развития представляет собой консервативную силу в эволюции. Канализированное онтогенетическое развитие устойчиво к радикальному изменению. Генные мутации или рекомбинации, коренным образом изменяющие нормальное развитие, будут элиминироваться. Сохраниться могут только те генетически детерминированные изменения онтогенеза, которые означают относительно небольшие сдвиги в процессе развития. Предсуществующая морфологическая структура ограничивает диапазон генных мутаций и рекомбинаций, которые могут способствовать адаптации (Waddington, 1957; Whyte, 1965; Stebbins, 1974*).

В случае такого изменения среды, которое потребует возникновения нового и притом иного признака, канализация развития в силу своей консервативности может оказаться фатальной. И в самом деле, вымирание — явление обычное. Это, однако, не единственный возможный исход и существуют некоторые пути, позволяющие избежать его.

На ювенильных стадиях онтогенеза обычно отсутствуют специализированные признаки, имеющиеся у взрослых особей. Контролируемые генами изменения скорости развития, ведущие к педоморфозу, могут поэтому вывести ту или иную группу из состояния её нынешней специализации и дать ей возможность развиваться в новых направлениях (Huxley, 1942; de Beer, 1951; Hardy, 1954; Тахтаджян, 1959a, b*). Широкое распространение педоморфных признаков среди растений и животных позволяет считать, что эволюция следовала по этому пути довольно часто.

i123456789101112131415161718192021222324252627282930313233343536373839