На главную
Библиотека сайта
История развития жизни
Креационизм
Ссылки
Гостевая




i123456789101112131415161718192021222324252627282930313233343536373839

Глава 3

Воспроизводящаяся популяция

Эволюционное изменение — это явление, относящееся к популяциям и системам популяций. В своей простейшей форме эволюция осуществляется в пределах локальных воспроизводящихся популяций. Это микроэволюция. Локальную воспроизводящуюся популяцию можно рассматривать как плацдарм для микроэволюции. Необходимо поэтому начать наш обзор процессов микроэволюции с разбора общих свойств популяций.

«Популяция — достаточно многочисленная совокупность особей определённого вида, в течение большого числа поколений населяющая определённое пространство (внутри которого нет установившихся изоляционных барьеров) и отделенная от таких же совокупностей особей данного вида той или иной степенью давления тех или иных форм изоляции. Это определение приложимо только к двуполым скрещивающимся формам. Популяцией у организмов, размножающихся бесполым путем или путем облигатного партеногенеза или самооплодотворения, нужно считать группу особей клона или чистой линии (или смеси клонов и чистых линий), занимающих определённый ареал и отделенную от таких же совокупностей особей пространством с меньшей численностью или отсутствием особей данного вида» (Яблоков, Ларина, 1985Д). Такое определение соответствует широкому кругу реально существующих популяций.

Целесообразно представлять себе популяции и популяционные системы в виде иерархии — от случайно скрещивающейся группы до вида. Скрещивающаяся популяция — популяционная единица, имеющая некую локальную протяженность в этой непрерывной иерархии.

Структура популяции

Скрещивающаяся популяция представляет собой репродуктивную единицу. У организмов с половым размножением — это сообщество особей, связанных между собой узами скрещивания и взаимоотношениями родители — потомки (Dobzhansky, 1950*). У организмов с бесполым размножением сохраняются связи родители — потомки, но перекрестные связи между особями, обусловленные скрещиванием, сильно ослаблены; не следует, однако, полностью исключать наличие у бесполых организмов таких связей, поскольку у многих организмов, которые обычно размножаются бесполым путем, существуют те или иные парасексуальные способы размножения или же время от времени происходит возврат к половому размножению. Популяция, как правило, представляет собой свободно скрещивающуюся группу, независимо от того, происходит ли скрещивание регулярно или эпизодически, и во всех случаях это некая репродуктивная единица. Популяция представляет собой также экологическую единицу. Составляющие её особи генотипически сходны по своей экологической толерантности, занимают определённую область в той или иной экологической нише или местообитании и предъявляют сходные требования к условиям среды.

Реально существующие популяции очень разнообразны по величине и форме. Структура популяции слагается из четырёх главных компонент: величины популяции, пространственной конфигурации, системы размножения и скорости расселения (последняя компонента рассматривается в гл. 9),

Величина популяции, т. е. число половозрелых размножающихся особей в каждом поколении (N), может колебаться от нескольких единиц до многих миллионов. Что касается пространственного распределения популяции, то можно выделить три основные категории: 1) большие непрерывные популяции; 2) мелкие изолированные колониальные популяции (или популяции, соответствующие островному типу); 3) линейные популяции. Кроме того, существуют разнообразные варианты, промежуточные между этими трёмя основными типами.

Примером больших непрерывных популяций служат популяции злаков, растущих на равнинах и покрывающих площади шириной в десятки или сотни километров. Организмы с колониальной популяционной системой образуют ряд разбросанных, разобщённых и нередко мелких популяций. Примерами могут служить наземные животные, обитающие на архипелагах; пресноводные формы, населяющие цепь озер, обитатели горных вершин в горной местности и организмы, ограниченные определённым типом почвы или горной породы с пятнистым распределением. Линейные популяции возникают вдоль рек, на побережьях морей и в аналогичных местообитаниях, обладающих большой протяженностью и более или менее непрерывных в одном измерении, но коротких и ограниченных в другом.

Часто встречаются и различные промежуточные состояния. Большая популяция может быть непрерывной в одних частях занимаемой ею области, но прерывистой или полунепрерывной в других. Подобным же образом колонии, населяющие систему островов, могут быть изолированы лишь частично, а не полностью. В следующем разделе мы опишем конкретный пример — структуру популяции гигантской секвойи, или мамонтова дерева (Sequoiadendron giganteum), в которой сочетаются самые разнообразные состояния — от изолированных колоний на севере до прерывистого лесного пояса на юге.

Что касается систем размножения, то их диапазон очень широк — от свободного неродственного скрещивания до самооплодотворения. Часто встречаются такие промежуточные типы, как свободное скрещивание между близкими соседями; инбридинг, осуществляемый иными способами, нежели самооплодотворение (например скрещивание между сибсами у животных); сочетание неродственного скрещивания с самоопылением, как у гермафродитных, но самосовместимых цветковых растений.

Варианты пространственного распространения и систем размножения встречаются во всевозможных сочетаниях, создавая в результате чрезвычайно разнообразные структуры популяций. Так, большая непрерывная популяция может состоять из свободно скрещивающихся особей, как у многих опыляемых ветром травянистых растений равнин, но она может также состоять из особей с ограниченной свободой скрещивания или из инбредных особей. Подобно этому небольшая изолированная колония может состоять или из свободно скрещивающихся или из инбредных особей. Структура популяции оказывает влияние на характер её изменчивости, о чем будет сказано ниже.

Популяции Мамонтова дерева

Мамонтово дерево (Sequoiadendron giganteum) — перекрёстноопыляющееся при помощи ветра хвойное дерево — встречается в сосново-пихтовых лесах на небольших высотах (1500 — 2400 м) на западных склонах гор Сьерра-Невада в Калифорнии. Область его распространения образует узкую полосу протяженностью около 400 км (рис. 3.1, А). В пределах этой области мамонтово дерево встречается в виде ряда обособленных и более или менее разобщённых популяций (рис. 3.1, Б).

Число локальных популяций по разным оценкам колеблется от 32 до 75 в зависимости от того, считать ли популяции в форме гантелей за одну или за несколько. По данным разных ботаников, число рощ равно 32 (Jepson, 1909), 71 (Fry, White, 1938) и 75 (Rundel, 1972a)*. Мы следуем оценке Джепсона (Jepson) с тем, чтобы использовать его старые демографические данные.

В самом начале XX в. 32 различаемые здесь локальные популяции имели размеры, приведённые в табл. 3.1. Мелкие популяции называют рощами, а крупные, за немногими исключениями — лесами. В период проведения учетов, результаты которых представлены в табл. 3.1, эти леса интенсивно вырубались, но пни от поваленных деревьев ещё оставались на месте. Поэтому данные таблицы отражают величину прежних, ненарушенных популяций. Как видно из табл. 3.1, величина популяций сильно варьирует — от рощиц, состоящих всего из нескольких деревьев, До лесов, в которых насчитываются тысячи индивидуумов. По данным более позднего учета (Fry, White, 1938*), число деревьев в большинстве популяций уменьшилось.

Рис. 3.1. Географическое распространение Sequoiadendron giganteum. А. Распространение Sequoiadendron (черным) в горах Сьерра-Невада (сетка). В. Центральная и южная части гор Сьерра-Невада (увеличено). Черными кружками обозначены популяции Sequoiadendron, номера которых соответствуют номерам в табл. 3.1.

Северная и южная части видового ареала различаются по структуре популяций. В северной части ареала Мамонтово дерево обычно растет в виде маленьких, далеко отстоящих друг от друга рощиц. Расстояния между рощицами нередко составляют от 15 до 80 км. В южной же части более обычны, или, вернее, были обычны, большие леса, в пространствах между которыми встречаются отдельные деревья, так что популяции объединены в полунепрерывный пояс.

Таблица 3.1. Популяция мамонтова дерева (Sequoiadendron giganteum)в горах Сьерра-Невада в штате Калифорния (по Jepson, 1909*)
Роща или лесПлощадь,
га
Число де­ревьев
Северная часть ареала        
 1. Северная роща —    6    
 2. Роща Калаверас 20    101    
 3. Роща Станислава 400    1380    
 4. Роща Тулуумне 4    40    
 5. Роща Мерсед 8    33    
 6. Роща Марипоза 50    547    
 7. Роща Фресно 1000    1500    

Южная часть ареала
       
 8. Роща Динки 20    170    
 9. Лес Конверс-Безин 2000    12 000    
10. Лес Баулдер-Крик 1280    6 450    
11. Роща генерала Гранта 1000    250    
12. Лес Редвуд-Каньон 1200    15 000    
13. Лес Норд-Кавеа 200    800    
14. Роща Суони-Ривер 8    129    
15. Гиганский лес 3200    20 000    
16. Роща Редвуд-Мидоу 20    200    
17. Роща Хармон-Мидоу 4    80    
18. Лес Этвел 600    3 000    
19. Роща Лейк-Каньон 8    80    
20. Роща Мюль-Галч 10    70    
21. Лес Хомерс-Пик 2200    1 500    
22. Роща Саут-Кавеа 64    300    
23. Лес Диллон 1440    3 500    
24. Лес Тюль-Ривер 6000    5 000    
25. Роща Пиксли 340    500    
26. Лес Флейтц 1600    1 500    
27. Лес Патнем-Милл 1600    900    
28. Рощи Кессинг 1120    700    
29. Роща индейской резервации 600    350    
30. Роща Оленьего ручья 120    100    
31. Лес Фримен-Волей 400    400    
32. Рощи Керн-Ривер 280    200    

Обширные разрывы между северными рощицами соответствуют долинам, которые во время последнего оледенения были заняты льдами. Предполагают, что до наступления оледенения популяции Мамонтова дерева в центральной части гор Сьерра-Невада были более обширными и непрерывными, но под действием ледникового климата сократились и разбились на части и с тех пор не могут вновь занять утраченную территорию. В южной части Сьерра-Невады оледенение не оказало столь сильного влияния на популяции Мамонтова дерева (Sudworth, 1908; Axelrod, 1959*).

В настоящее время границы локальных популяций определяются, по крайней мере в некоторых исследованных случаях, влажностью почвы. Рощи находятся в тех местах, где в засушливые летние месяцы почва содержит достаточно влаги. Источником почвенной влаги в высоких горах служат летние дожди. Некоторые участки, расположенные на средней высоте, в период дождей накапливают грунтовые воды, а другие нет; мамонтово дерево растет на участках первого типа (Rundel, 1972b*).

Полиморфизм

Согласно определению, полиморфизм — это существование в популяции двух или более резко различающихся (прерывистых) форм, при котором частота более редкой формы определяется не одним лишь мутированием (Ford, 1964, 1965*). Иными словами, полиморфизм — это такая изменчивость в локальной воспроизводящейся популяции, при которой проявляется чётко выраженное или резкое менделевское расщепление.

Такое определение полиморфизма не позволяет относить к нему некоторые типы изменчивости. Оно исключает чисто фенотипическую изменчивость (поскольку это негенетическая изменчивость); оно исключает географическую изменчивость (которой не существует в одной популяции); оно исключает полигенную изменчивость (при которой не происходит расщепления на резко различающиеся классы); и, наконец, оно исключает генетическую изменчивость, обусловленную новыми или повторными мутациями.

На основе разных критериев можно выделять различные типы полиморфизма. Важно различать генетический полиморфизм и хромосомную изменчивость. Генетический полиморфизм — это прерывистая изменчивость по гомологичным аллелям одного и того же генного локуса. Хромосомным называют полиморфизм по типам хромосом, например по половым хромосомам, или по таким перестройкам, как инверсии.

Различают также переходный и сбалансированный полиморфизм. В случае переходного полиморфизма разнообразие носит временный характер: оно наблюдается до тех пор, пока происходит процесс замещения одной формы другой при контролирующем действии естественного отбора. При сбалансированном полиморфизме разные типы представляют собой более или менее постоянные компоненты данной популяции благодаря естественному отбору, который благоприятствует сохранению разнообразия (Ford, 1964, 1965*).

Все формы полиморфизма — генетический, хромосомный, переходный и сбалансированный — весьма обычны и широко распространены в живой природе. В популяциях организмов с половым размножением полиморфизм в сущности наблюдается всегда. В следующем разделе мы опишем конкретный пример — полиморфизм по группам крови у человека.

Явление полиморфизма подводит нас к концепции генофонда, которая в свою очередь даёт возможность по-иному взглянуть на локальную воспроизводящуюся популяцию. Рассмотрим популяцию, полиморфную по гену A и содержащую аллели A1, A2 и A3. В такой популяции будут возникать диплоидные генотипы A1A1, A1A2, A2A2 и т. п., и обусловленные этими генотипами формы будут представлены в любой выборке особей, однако ясно, что одна из главных черт данной популяции — это генетический полиморфизм, лежащий в основе наблюдаемого разнообразия. Можно сказать, что генофонд такой популяции содержит аллели A1, A2 и A3. Кроме того, эти аллели встречаются в генофонде с определённой частотой; допустим, что их частоты равны соответственно 60, 30 и 10%. Следовательно, популяцию можно описать количественно, используя типы генов, содержащихся в её генофонде, и их частоты.

Следует отметить, что концепция генофонда шире, чем концепция полиморфизма. Генофонд популяции слагается из всех имеющихся в ней генов. Так, генофонд нашей гипотетической популяции может быть полиморфным по гену А, содержать редкий мутантный аллель гена В и быть мономорфным по генам С и D.

Теперь мы можем описать или по крайней мере охарактеризовать локальную воспроизводящуюся популяцию как группу особей, имеющих общий генофонд (Dobzhansky, 1950*). Особи, из которых состоит данная популяция, в каждом данном поколении представляют собой различные генотипические продукты гамет, взятых из генофонда этой популяции в предшествующем поколении.

Полиморфизм по группам крови у человека

Разные люди по-разному реагируют на переливание крови. В некоторых случаях переливание крови приводит к агглютинации, или слипанию, эритроцитов, тогда как в других этого не происходит. Реакция агглютинации обусловлена иммунологическим взаимодействием антигенов, содержащихся в эритроцитах донора, и антител, содержащихся в сыворотке крови реципиента.

  Таблица 3.2. Генетические основы групп крови  
системы AB0 (Stern, 1960*)
 Генотип Фенотип (группа крови)
 IAIA и IAI0 Группа A
 IBIB и IBI0 Группа B
 IAIB Группа AB
 I0I0 Группа 0

В зависимости от типа содержащегося в крови антигена различают четыре группы крови (А, В, АВ и О). Каждый человек относится к одному из этих четырёх фенотипических классов. Индивидуум, обладающий кровью группы А, может дать свою кровь для переливания другому индивидууму с той же группой крови, у которого при этом не возникнет агглютинации. Подобным же образом кровь группы В можно переливать людям, имеющим группу В. Но переливание крови группы А людям с группой В или крови группы В людям с группой А вызывает сильную агглютинацию. Нет нужды описывать здесь реакции, возникающие при всех возможных сочетаниях групп крови (см. Stern, 1960; Race, Sanger, 1962*). В общем агглютинация происходит в тех случаях, когда донор и реципиент имеют разные группы крови.

Группы крови определяются серией из трёх аллелей: IA, IB и I0. Аллель I0 рецессивен по отношению к аллелям IA и IB (иногда его обозначают буквой i). Аллели IA и IB — кодоминантны. Шесть диплоидных генотипов, образуемых этими трёмя аллелями, фенотипически проявляются как четыре группы крови в системе АВО (табл. 3.2). На самом деле у аллеля IA имеются различные, но иммунологически сходные изоаллели (IA1, IA2 и т. д.), поэтому число возможных генотипов больше шести; однако в нашем обсуждении этими тонкими различиями аллеля IA можно пренебречь.

Популяции человека обычно полиморфны по группам крови системы АВО. Частоты различных групп крови и лежащих в их основе аллелей известны для сотен локальных популяций из самых различных областей земного шара. В табл. 3.3 приведены частоты разных аллелей для трёх популяций. Как показывают эти примеры, разные популяции человека сходны в том, что все они полиморфны по группам крови АВО, однако различаются по частотам аллелей. У каждой локальной популяции имеется свой генофонд с характерным для нее составом аллелей гена I.

Локальные популяции представляют собой части более крупных региональных расовых групп. У родственных локальных популяций, обитающих в одной и той же области, генофонды обычно несколько различаются. Так, частота аллеля IA среди населения шведского города Упсала составляет, как указано в табл. 3.3, 31.9%, а среди населения другого шведского города, Фалуна — 28.4%. Напротив, между географическими расами наблюдаются устойчивые различия ко частоте аллелей.

  Таблица 3.3. Частоты аллелей гена I в трёх популяциях  
человека (Mourant, 1954; Mourant, 1976*)
Популяциячастота
IAIBI0
Упсала (Швеция)    0.319      0.079      0.603   
Пенджаб (Индия)    0.181      0.259      0.560   
Индейцы племени Нава-
хо (Нью-Мексико)
   0.133      0.000      0.867   

Почти во всех популяциях коренных обитателей Западной Европы наблюдается высокая частота аллеля IA и низкая (менее 10%) частота аллеля IB. В Центральной Азии наблюдается высокая (20 — 30%) частота аллеля IB. Среди американских индейцев аллель I0 встречается с высокой частотой, тогда как аллель IB редок или отсутствует вовсе (Mourant, 1954; Mourant et al., 1976*). Равновесие между разными типами несколько сдвигается при переходе из одной географической области в другую, мы ещё вернемся к географическому распределению групп крови системы АВО в гл. 16.

Чрезвычайно интересно, что параллельная полиморфная изменчивость по группам крови АВО обнаружена у человекообразных обезьян. У шимпанзе найдены группы А и 0, у орангутана и гиббона имеются группы А, В и АВ (Mourant, 1954; Wiener, Moor-Jankowsky, 1971*). Таким образом, полиморфизм по группам крови системы АВО возник в процессе эволюции раньше, чем сам вид Homo sapiens, и им обладают также ближайшие родичи человека в отряде приматов.

У человека существует ещё несколько систем групп крови: система Rh, система MN и другие. Популяции человека полиморфны также и по этим системам (Race, Sanger, 1962; Mourant et al., 1976*). Полиморфная изменчивость по системам Rh и другим, по-видимому, независима от изменчивости по системе АВ0.

Полиморфизм по ферментам

Метод гель-электрофореза даёт возможность обнаруживать полиморфизм по ферментам и по некоторым белкам, который не удавалось выявить обычными генетическими методами. Экстракт какой-либо ткани помещают в гель и подвергают действию электрического поля. Вследствие характерных особенностей подвижности в электрическом поле разных ферментов последние физически разделяются; затем гель окрашивают, и разные ферменты выявляются в виде обособленных пятен. Этим методом можно выявить аллельные различия для одной ферментной системы и генные различия между ферментами.

  Таблица 3.4. Частота полиморфизма по ферментам у разных  организмов (по данным Nevo, 1978*)
ВидыЧисло изу-
ченных ло-
кусов
Полиморф-
ные локу-
сы, %

Приматы
Homo sapiens (Европа) 7128
Macaca fuscata 2910

Грызуны
Mus musculus (Дания) 4126
Peromyscus polionotus 3223

Птицы
Passer domesticus 1533
Pipilo erithropthhalmus 1817

Ящерицы
Sceloporus grammicus 1921
Uta stansburiana (материк) 17–1814

Амфибии
Bufo americanus 1426
Rana ridibunda 2734

Костные рыбы
Salmo gairdneri 2315
Mugil cephalus 3020

Дрозофилы
Drosophila melanogaster 1942
D. pseudoobscura 18, 2430, 42
D. wilistoni 3146

Другие насекомые
Solenobia triquetrella 1647
Periplaneta americana 2040

Злаки
Hordeum spontaneum 2830
Avena barbata 16, 1921, 31

Другие цветковые растения
Phlox drummondii 1619
Stephanomeria axigua 1434

Плаунообразные
Lucopodium lucidulum 1810

Использование метода электрофореза при изучении выборок из природных популяций привело к поразительным результатам. В популяциях различных видов были выявлены неожиданно высокие уровни полиморфизма. В табл. 3.4 приведены данные о частоте полиморфизма по ферментам у представителей различных крупных групп организмов (они взяты из гораздо более обширной таблицы, см. Nevo, 1978*). Можно видеть, что частота полиморфных ферментных локусов достигает у некоторых видов 40% и более.

Ниже приведена частота полиморфизма (выраженная в процентах) по ферментам для выборок видов, принадлежащих к различным крупным группам (Nevo, 1978*).

Млекопитающие
14.7
Птицы
15.0
Рептилии
21.9
Амфибии
26.9
Костные рыбы
15.2
Дрозофила
43.1
Другие насекомые
32.9
Растения
25.9

Полиморфизм по ферментам оказался широко распространенным в органическом мире.*

Гетерозиготность и норма

Генофонды свободно скрещивающихся животных и растений обычно содержат, как было отмечено выше, во многих генных локусах по многу аллелей. Таким образом, в результате свободного скрещивания возникают высокогетерозиготные диплоидные особи. Многие аллели в каждом локусе уже подвергались в предыдущих поколениях отбору на хорошую комбинационную способность в диплоидных гетерозиготных генотипах. Особи с нормальным фенотипом и нормальной жизнеспособностью представляют собой гетерозиготы. Кроме того, нормальное фенотипическое состояние создаётся различными гетерозиготными комбинациями генов. Об этом свидетельствуют результаты инбридинга таких свободно скрещивающихся диплоидных организмов.

В популяциях Drosophila melanogaster встречаются иногда аберрантные особи с дополнительными жилками на крыльях; частота таких особей очень низка. Дубинин (1948)* использовал большое число нормальных самок дикого типа из алма-атинской популяции D. melanogaster в качестве исходного материала для выведения чистых линий. Оказалось, что 60 различных инбредных линий давали потомков с дополнительными жилками. После инбридинга на протяжении ряда поколений этот аберрантный признак был выявлен в 68% изученных линий. Этот признак экспрессировался в результате инбридинга и в других популяциях, помимо алма-атинской.

Лернер (Lerner, 1954*) получил аналогичные результаты при инбридинге кур, где в разных инбредных линиях появлялись особи с аномальными скрюченными пальцами. Как и у D. melanogaster, этот аберрантный признак не был обусловлен каким-то одним геном. Отклоняющийся от нормы фенотип с такой специфичной аномалией был назван феноотклонением (Lerner, 1954*). Феноотклонения были обнаружены также у грызунов и у растения Linanthus (Lerner, 1954; Grant, 1975*).

Феноотклонения — особый случай хорошо известного явления инбредной депрессии. Пониженные жизнеспособность и плодовитость обычно наблюдаются у инбредных потомков животных и растений, для которых характерно свободное скрещивание. Снижение жизнеспособности или плодовитости может быть умеренным или сильным.

Инбридинг или аутбридинг у свободно скрещивающихся организмов оказывают также влияние на уровень изменчивости, обусловленной условиями среды. Средовая дисперсия обычно ниже среди гетерозигот и выше среди инбредных потомков у дрозофил, кур, мышей, кукурузы, первоцвета и других свободно скрещивающихся организмов. В таких случаях стабильность развития, или морфогенетический гомеостаз, — результат гетерозиготности (Lerner, 1954*).

Таким образом установлено, что у широкого круга свободно скрещивающихся диплоидных организмов хорошо забуференный нормальный фенотип определяется гетерозиготностью, имеющей широкую основу. Нормальная особь — это не какая-то одна гетерозиготная форма, но любая из многочисленных возможных гетерозиготных комбинаций, Нормальное состояние может быть достигнуто разными путями, что наводит на мысль о его обусловленности гетерозиготностью как таковой (Lerner, 1954*).

Концепция популяции

Концепцию генетически изменчивых популяций как репродуктивных единиц ни в коей мере нельзя считать самоочевидной. Этой концепции не существовало ни в XVIII, ни в начале XIX в., а в некоторых областях биологии она отсутствует до сих пор. Согласно Майру (Mayr, 1972a, 1982*), её ввел в биологию Дарвин в 1859 г. Концепция популяции была одним из элементов переворота, произведенного Дарвином в научном мышлении.

Концепция популяции прямо противоположна эссенциализму. Сторонники эссенциализма считают, что наблюдаемые в мире явления представляют собой отражения лежащих в их основе сущностей. Явления предстают в различных формах, сущность же их неизменна. Следовательно, члены того или иного класса объектов, в том числе и особи, составляющие какую-либо популяцию, — это различные выражения одной и той же сущности. Эссенциализм в том или ином варианте был традиционным философским учением в Европе. Философия Платона, христианское богословие и философский идеализм представляли собой различные модификации эссенциализма. Естественно, что эссенциализм господствовал в научном мышлении в ранний период развития биологии. Здесь он принял форму, которую Майр (Mayr, 1957a, b, 1972a; 1982*) назвал типологическим мышлением. Согласно этим взглядам, отдельные организмы представляют собой несовершенные, а потому изменчивые проявления архетипа того вида, к которому они принадлежат.

Типологическое мышление препятствует пониманию эволюции, для которого необходимо популяционое мышление, поскольку эволюция — это изменение генетического состава популяций. Чрезвычайно важным, хотя и скрытым достоинством совершенного Дарвином переворота была, согласно Майру (Mayr, 1972a; 1982*), замена типологического мышления в биологии популяционным. Введение популяционной концепции устранило давнее и сильное препятствие, мешавшее пониманию эволюции вообще и естественного отбора в частности.

i123456789101112131415161718192021222324252627282930313233343536373839