На главную
Библиотека сайта
История развития жизни
Креационизм
Ссылки
Гостевая




i123456789101112131415161718192021222324252627282930313233343536373839

Глава 5

Динамика популяций

Определение микроэволюции

Как уже было отмечено в предыдущей главе, частоты аллелей в обширном генофонде не изменяются сами по себе. Наблюдения тем не менее показывают, что в локальных популяциях происходят изменения частот аллелей в ряду последовательных поколений. С течением времени генофонд все-таки изменяется.

Мы можем определить микроэволюцию как систематическое изменение частот гомологичных аллелей, участков хромосом или целых хромосом в локальной популяции; иначе говоря, микроэволюцией называют любое увеличение или уменьшение частоты в генофонде какой-либо вариантной формы, которая продолжает встречаться в популяции из поколения в поколение.

В природных популяциях можно найти великое множество примеров микроэволюционных изменений. Для наших целей достаточно описать один наглядный пример, относящийся к Drosophila pseudoobscura.

Микроэволюционные изменения у Drosophila pseudoobscura

Для D. pseudoobscura характерна изменчивость последовательности генов в одном из участков третьей хромосомы. Разные линии мух различаются по инверсиям в этом участке. Каждая инверсия имеет название и буквенное обозначение: Стандарт (ST), Эрроухед (AR), Чирикахуа (СН), Три-Лайн (TL), Пайкс-Пик (РР) и т. д. У D. pseudoobscura обнаружено 16 таких инверсионных форм. Они выявляются цитологически по характеру поперечной исчерченности хромосом слюнных желез у личинок.

Большая часть природных популяций D. pseudoobscura в западной части Северной Америки полиморфна по третьей хромосоме. Полиморфные популяции содержат по два или более типов инверсий в различных гомозиготных и гетерозиготных комбинациях (например, ST/ST, СН/СН, ST/CH). В каждой данной популяции разные типы инверсий обычно встречаются с определёнными средними годовыми частотами.

В популяциях D. pseudoobscura, обитающих в горах Сьерра-Невада (Калифорния), обычно встречаются инверсии ST, AR и СН. Четыре другие инверсии (TL, OL, SC и РР) встречаются в этой местности с низкой частотой. Мы займемся здесь одним из редких типов (РР) в одной из локальных популяций (Матер). Популяция Матера в округе Йосемит (шт. Калифорния) на протяжении многих лет изучалась Добржанским и др. (см. Dobzhansky, 1956; 1958; 1971*).

  Таблица 5.1. Изменение частот двух типов инверсий (PP и CH)  
в поруляции Drosophila pseudoobscura в Матере (Калифорния)
на протяжении 28 лет (Dobzhansky, 1971; Anderson et al., 1975*)
ГодЧастота ти-
па PP, %
Частота ти-
па CH, %
Число исследован-
ных хромосом
1945 0.0       17         308            
1946 0.3       17         336            
1947 0.7       20         425            
1950 3        17         812            
1951 5        11         856            
195412        13        1312            
195710         4         316            
1959 4        11         298            
1961 6         3         350            
1962 9         2         450            
1963 7         6         446            
1965 6        11         534            
1969 2         3         312            
1971 3        12         390            
1972 6        17         576            

Инверсия типа Пайкс-Пик встречалась, хотя и крайне редко, в популяциях Drosophila в Сьерра-Неваде в 1945 г. и до этого, но в популяции Матера в это время она не была известна, В 1946 г. инверсия РР стала встречаться в популяции Матера с очень низкой частотой (0.3%). За последующие 40 лет (1947 — 1957 гг.) частота инверсии РР быстро возрастала, достигнув 10 и даже 12% (табл. 5.1). В дальнейшем (1959 — 1965 гг.) её частота колебалась на несколько более низком уровне, а затем довольно сильно упала.

Повышение частоты инверсии РР в популяции Матера сопровождалось понижением частоты инверсии СH, которая раньше встречалась довольно часто, до очень низких для нее уровней (2 — 6%). Сравнительно недавно частота типа CH вернулась к прежнему уровню (табл. 5.1). В это же время происходили аналогичные изменения в соотношении инверсий ST и AR (Dobzhansky, 1971*).

Резкое повышение частоты инверсии типа РР наблюдалось не только в популяции Матера. Параллельное увеличение частоты этой инверсии отмечалось в других обособленных популяциях D. pseudoobscura в местностях, разбросанных по всей Калифорнии и Аризоне. Так, в горах Сан-Джасинто на юге Калифорнии инверсия РР впервые появилась в 1952 г. и достигла максимальной частоты (10 и 11%) в последующие несколько лет, а в шестидесятые годы частота её вновь упала (Dobzhansky, 1971*). Изменения частоты инверсии РР носили одинаковый характер на всем протяжении обширной географической области.

Причины наблюдаемых микроэволюционных изменений неизвестны. Имеющихся данных достаточно, чтобы исключить участие в этом некоторых возможных факторов. Полиморфные лабораторные популяции Drosophila pseudoobscura, выращиваемые при благоприятных условиях, подчиняются закону Харди — Вайнберга в смысле соотношения типов инверсий и соответствующих диплоидных генотипов. В этом случае экспериментальные данные подтверждают теорию, исключая возможность каких-либо изменений, направляемых изнутри. Возможность случайных эффектов исключается большими размерами как самих популяций, так и изучавшихся выборок. Давление мутаций также следует исключить, поскольку в сильно разобщённых локальных популяциях наблюдались параллельные изменения. Можно почти не сомневаться в том, что обнаруженные изменения обусловлены естественным отбором. Однако несмотря на обширные исследования, направленные на выявление участвующего в этом фактора отбора, определить его не удалось (Dobzhansky, 1956; 1958; 1971*).

Главные факторы эволюции

Факторы, вызывающие изменения частот аллелей или хромосомных инверсий, можно назвать главными факторами эволюции. Известно четыре таких фактора: мутационный процесс, поток генов, естественный отбор и дрейф генов.

Допустим, что генофонд какой-либо популяции состоит главным образом из аллелей A1 и в меньшей степени — из аллелей A2. Первоначальные частоты генов могут изменяться под действием каждого из указанных выше четырёх факторов эволюции следующим образом.

Аллель A1 может мутировать в аллель A2 один раз или многократно, увеличивая тем самым частоту A2. Особи или гаметы, несущие аллель A2, могут мигрировать в изучаемую популяцию из какой-либо другой, популяции, в которой аллель A2 встречается чаще. Подобная миграция или поток генов также изменит прежние частоты генов в популяции-реципиенте.

Носители аллелей A1 и A2 могут различаться по фенотипическим признакам, влияющим на их способность к выживанию и размножению, а тем самым на их вклад в следующее поколение. Если особи, несущие аллель A2, превосходят по этим показателям особей, несущих аллель A1, то частота аллеля A2 в популяции будет постепенно повышаться. В данном случае действует естеcтвенный отбор — самый важный из факторов, регулирующих частоту генов в природных популяциях. Наконец, значительные сдвиги частот аллелей A1 и A2 могут происходить в небольших популяциях случайным образом. Этот случайный компонент в изменении генных частот известен под названием дрейфа генов. Интенсивность действия каждой из этих четырёх сил может быть различной, и её можно охарактеризовать количественно. Частота возникновения мутаций (u) может варьировать от 0 до 1, где 0 — полная устойчивость, а 1 — полная неустойчивость данного гена. Аналогичным образом скорость потока генов (m) изменяется в диапазоне от m=0 (отсутствие миграции) до m=1 (полное «затопление»).

Коэффициент отбора (s) служит мерой среднего повышения частоты одного аллеля относительно других, конкурирующих, аллелей за одно поколение. Этот коэффициент может варьировать от 0 до 1, где s = 0 означает отсутствие отбора, а s=1 — очень быстрое замещение гена, подобное тому, которое происходит в тех случаях, когда один аллель летален.

Возможность действия генетического дрейфа выражается зависимостью между величиной популяции (N) и другими переменными. Дрейф может эффективно регулировать частоты генов, если N мало по сравнению с s, m и u.

Взаимодействие между факторами эволюции

Первые два из упомянутых выше факторов — мутационный процесс и поток генов — создают изменчивость. Два других фактора — естественный отбор и дрейф генов — сортируют эту изменчивость. Факторы, создающие изменчивость, дают начало процессу микроэволюции, а факторы, сортирующие изменчивость, продолжают процесс, что приводит к установлению новых частот вариантов. Эволюционное изменение в пределах популяции можно рассматривать как результат действия противоположных сил, создающих и сортирующих генетическую изменчивость.

Одна из старых теорий эволюции — теория ортогенеза, до сих пор имеющая приверженцев, — постулирует, что эволюционные изменения направляются главным образом мутационным процессом. Против такого взгляда существуют два веских аргумента.

Во-первых, мутационные изменения возникают более или менее независимо от приспособительных потребностей организма и сами по себе не могут создать приспособительные признаки, наблюдаемые у организмов. В дополнение к этим изменениям необходимо действие естественного отбора, который бы перенес процесс «с химического уровня мутации на биологический уровень адаптации» (Darlington, 1939*).

Во-вторых, во временной последовательности микроэволюции отбор всегда вступает в действие после мутационного процесса. Каким бы сильным или направленным ни было давление мутаций в данной популяции, его благоприятное действие всегда контролируется естественным отбором, за которым и остается последнее слово.

В равной мере справедливо, что отбор не сможет действовать, если мутационный процесс не будет поставлять ему новые генетические вариации. Микроэволюция обусловлена действием не одной силы, а взаимодействием двух, трёх или четырёх сил.

Количественная оценка главных факторов эволюции создаёт возможность количественного выражения взаимодействий между ними. Последнее относительно просто в теории и иногда достижимо в создаваемых искусственно экспериментальных популяциях, однако в природных популяциях осуществить это крайне трудно ввиду наличия многочисленных неконтролируемых факторов. Тем не менее было сделано несколько попыток подойти к этой проблеме в реальных популяциях.

Примером взаимодействия между мутационным процессом и отбором служит гемофилия у человека. Гемофилия — кровоточивость, обусловленная пониженной свертываемостью крови, — обычно приводит к смерти в раннем возрасте. Наиболее распространенный тип гемофилии, гемофилия А, обусловлена рецессивным аллелем (hh) гена Hh, сцепленного с полом или с Х-хромосомой. Гетерозиготные носительницы (Hh/hh) иногда рождают сыновей с конституцией h/0, у которых проявляется болезнь (Stern, 1973*).

Мужчины, страдающие гемофилией, в большинстве случаев, хотя и не всегда, умирают до достижения половой зрелости, и поэтому аллель hh имеет низкое селективное значение в полулетальном диапазоне. Гомозиготы (hh) всё время элиминируются из популяций человека в результате отбора. Тем не менее они постоянно присутствуют в популяции с низкой частотой. Сохранение аллелей hh объясняют повторным мутированием Hh в hh (Stern, 1973*), причём частота мутаций, согласно оценкам, равна 1.3·10-5 (Cavalli-Sforza, Bodmer, 1971*). Постоянная низкая частота аллеля hh в популяциях человека свидетельствует, таким образом, о равновесии между повторными мутациями и отрицательным отбором.

Создание изменчивости в результате сочетания мутационного процесса и потока генов можно проиллюстрировать на примере наземной улитки Cepaea nemoralis в Западной Европе. В колониях этой улитки постоянно наблюдается полиморфизм, выражающийся в наличии или отсутствии коричневых полос на раковинах. Эти фенотипические различия регулируются геном, имеющим два аллеля: доминантный аллель В определяет развитие бесполосых, а рецессивный аллель b — полосатых раковин. Мутации из В в b и обратно происходят с частотой и — 0.0001—0.0005 (Lamotte, 1951*).

Структура популяций европейской наземной улитки различается в разных областях. Эти различия оказывают влияние на скорость потока генов. В провинции Гиень (Франция) колонии располагаются довольно близко друг от друга и нередко связаны между собой мигрирующими особями. Согласно оценкам, скорость (m) потока генов здесь составляет 0.003—0.004. В провинции Гиень поток генов представляет собой более существенный источник изменчивости популяции, чем мутационный процесс. В провинции Бретань (Франция) колонии улиток, напротив, располагаются далеко друг от друга и обмен мигрантами между ними происходит редко. Здесь мутационный процесс играет относительно большую роль, а поток генов имеет меньшее значение, чем в провинции Гиень (Lamotte, 1951*).

Однако на этом дело не кончается. Характер полосатости раковины у улиток регулируется, кроме того, отбором и, возможно, дрейфом генов (см. часть III).

Действие дрейфа генов целиком зависит от соотношения между факторами N, s, u и m. Например, дрейф генов может эффективно регулировать частоты генов при N<1/2s, если u и m настолько малы, что ими можно пренебречь. И наоборот, умеренные скорости мутирования и миграции могут свести на нет действие дрейфа. Чрезвычайно важную роль играет в природе сочетание дрейфа генов с отбором. Эти взаимодействия более подробно рассматриваются в гл. 16.

Заключение

Определение микроэволюции, данное в начале этой главы, обычно приводят в качестве определения эволюции вообще: «Эволюция— это изменение частот генов в популяциях». Некоторые эволюционисты считают это определение эволюции неадекватным (Mayr, 1982; 1988*). Я согласен с ними и именно поэтому привел его в качестве определения микроэволюции.

В применении к области микроэволюции это определение, основанное на частоте генов, пригодно и его следует сохранить, так как оно выражает полезную основную концепцию об эволюционном процессе. Генетический состав популяций не претерпевает систематических изменений в результате размножения как такового. Тем не менее подобные изменения происходят. Причины изменения следует искать среди известных нам факторов. Степень изменения определяется взаимодействием между этими факторами и их сбалансированностью. Концепция микроэволюции как изменения частот генов включает в себя популяционно-генетический подход к эволюции.

i123456789101112131415161718192021222324252627282930313233343536373839