На главную
Библиотека сайта
История развития жизни
Креационизм
Ссылки
Гостевая




i123456789101112131415161718192021222324252627282930313233343536373839

Глава 17

Плата за отбор

Генетический груз

Естественный отбор имеет как позитивный, так и негативный аспекты. Он влечет за собой предпочтительное выживание и размножение одних генотипов и предпочтительную элиминацию и невозможность размножения других. Данная глава посвящена второму аспекту.

Утрата популяцией некоторой доли генотипов в результате действия отбора совершенно очевидна в тех случаях, когда избирательная элиминация проявляется в форме смертности в дарвиновском смысле, т. е. имеется налицо труп, который можно увидеть. Однако отбор, как мы видели ранее, обусловливает, кроме того, успех или неудачу только в фазе размножения. Особи, обладающие данным генотипом, могут быть физически крепкими, но ввиду низкой плодовитости их вклад в следующее поколение окажется пониженным. В этом случае нет трупа, который можно было бы увидеть. Однако частота генов, определяющих низкую плодовитость, снижается, и они в конечном счете могут совершенно исчезнуть.

Невозможность размножения той или иной особи, обусловленная отбором в его негативном аспекте, проявляется ли она в форме избирательной смертности или неудавшегося размножения как такового, известна под названием генетической гибели (или гибели, обусловленной отбором). Генетическая гибель снижает репродуктивный потенциал популяции.

Популяция обладала бы более высокой численностью, если бы не потери за счет генетической гибели. Поэтому генетическая гибель представляет собой, по крайней мере потенциально, некое бремя для популяции. Это бремя называют генетическим грузом. Генетический груз определяется как 1 — средняя приспособленность популяции (Wallace, 1968*). Его можно представить себе также как общую сумму всех случаев генетической гибели в расчете на поколение.

Различают несколько типов генетического груза (Brues, 1969; Crow, 1970*), в том числе такие главные его типы, как мутационный груз, сегрегационный груз, груз, связанный с оказавшимися не на месте особями, и субституционный груз. Эти типы груза связаны с разными типами отбора.

Мутационный груз — неизбежный побочный продукт мутационного процесса. Этот процесс порождает вредные мутации, которые должны быть выметены стабилизирующим отбором. Сегрегационный груз существует в популяциях, которые используют преимущества, создаваемые превосходством гетерозигот. При этом в каждом поколении происходит выщепление менее приспособленных гомозигот, понижающих среднюю приспособленность популяции. Гомозиготы представляют собой плату за уравновешивающий отбор.

Груз, вносимый особями, оказавшимися «не на месте» («misplaced-individual load»), возможен в полиморфной популяции, находящейся в неоднородной среде, где некоторые особи неизбежно окажутся вне своей специфической ниши или субниши. В этих случаях может вступать в действие дизруптивный или уравновешивающий отбор или отбор обоих типов одновременно.

Направленный отбор порождает субституционный груз. Замещение старого аллеля новым, превосходящим его аллелем влечет за собой генетическую гибель носителей старого аллеля. Сумма случаев генетической гибели, происходящих при полном замещении какого-либо гена — суммарный субституционный груз,— может быть очень велика, поскольку частота старого аллеля, обреченного на замещение, в начале этого процесса обычно бывает высокой.

Полиморфизм по белкам и сегрегационный груз

Электрофоретические исследования ферментов, проведённые на ряде популяций дрозофил, позвоночных животных и растений, показали, что для довольно значительной части ферментных локусов характерен полиморфизм. Так, у Drosophila melanogaster из 19 ферментных локусов полиморфны были 42% локусов, у D. pseudoobscura и D. willistoni доля полиморфных локусов была сравнима с этой (см. табл. 3.3). Принято считать, что процент полиморфных локусов, выявляемых методами электрофореза, можно принять за показатель полиморфности генотипа в целом; тем самым повышается оценка общего количества генетического полиморфизма.

Многочисленность полиморфных генов — как выявленных, так и предсказываемых путем экстраполяции данных по выявленным генам — противоречит ожиданиям, основанным на данных о генетическом грузе. Каждый случай сбалансированного полиморфизма в данной популяции создаёт определённый сегрегационный груз, поскольку такой полиморфизм влечет за собой непрерывное выщепление гомозигот, жизнеспособность которых понижена. С возрастанием числа независимых локусов со сбалансированным полиморфизмом этот сегрегационный груз возрастает по экспоненте. Казалось бы, в какой-то момент популяция окажется не в состоянии нести этот сегрегационный груз. А между тем высокополиморфные популяции дрозофилы процветают.

Одна школа исследователей во главе с Кимурой попыталась разрешить эту дилемму, постулировав, что полиморфизм по белкам на самом деле не поддерживается отбором. Согласно их гипотезе, аллели большинства генов, детерминирующих ферменты, селективно нейтральны и дрейфуют с различными частотами в популяциях (Kimura, 1968; 1983; Kimura, Ohta, 1971b; King, Jukes, 1969*). Поэтому сегрегационный груз отсутствует. Нейтральная теория Кимуры действительно решала бы проблему, если бы гены ферментов были селективно нейтральны.

Но действительно ли нейтральны эти гены? Имеются данные, что по крайней мере некоторые ферментные гены не нейтральны в отношении отбора (см. гл. 32). Каково положение вещей? Спор между нейтрализмом и селекционизмом остается пока неразрешенным. Представляется вероятным, что некоторые полиморфные гены селективно нейтральны или почти нейтральны, тогда как другие, вероятно, находятся под контролем уравновешивающего отбора. Гены последнего класса должны поэтому вносить какой-то вклад в сегрегационный груз. Вопрос о том, каким образом популяция выдерживает этот груз, ещё предстоит выяснить.

Одна возможность состоит в том, что ферментные локусы, выявляемые электрофоретическими методами, не репрезентативны для генотипа в целом. Это предположение противоречит общепринятому, хотя и несформулированному допущению, но соответствует некоторым имеющимся данным (см. гл. 32). Поэтому было бы неверно оценивать общую частоту генетического полиморфизма на основании простой экстраполяции данных о частоте полиморфизма по белкам. Суммарный генетический полиморфизм вполне может оказаться значительно меньше, чем это считают. В таком случае и сегрегационный груз также был бы менее обременителен для популяции.

Плата за отбор по Холдейну

Субституционный груз тесно связан с тем, что Холдейн (Haldane, 1957; 1960*) назвал платой за отбор и что составляет основной предмет обсуждения этой главы. По холдейновской концепции плата за отбор — это общее число случаев генетической гибели в процессе полного замещения одного гена. Следовательно, цена отбора — это то же самое, что и кумулятивный субституционный груз за ряд поколений, а приращение платы за отбор — то же самое, что субституционный груз за поколение.

Две пионерские работы Холдейна (Haldane, 1957; 1960*) содержат математический анализ суммарного, или кумулятивного, субституционного груза в зависимости от величины популяции в каждом поколении. Он рассматривал влияние, оказываемое на эту зависимость интенсивностью отбора и другими факторами, а также влияние платы за отбор на скорость эволюции. Эта проблема была вновь исследована рядом ученых, сформулировавших её по-новому*. Дальнейшее изложение основано на работах Холдейна (Haldane, 1957; 1960*), Кроу и Кимуры (Krow, Kimura, 1970*) и Флейка (Flake, личное сообщение).

Число особей, элиминируемых отбором в процессе полного замещения одного аллеля другим (∑D), во много раз больше числа взрослых особей в любом отдельно взятом поколении (N). Между ∑D и N существует вполне определённая зависимость, выражаемая коэффициентом платы (С). В общем случае, если N константа, то ∑D = C·N.

Значение С для одного локуса в гаплоидной системе (которая в алгебраическом смысле гораздо проще, чем диплоидная система) можно вычислить следующим образом. Плата за отбор в расчете на одно поколение равна отношению

ω1sq
ω
     или     ω1ω
ω

где ω1 — приспособленность аллеля, которому благоприятствует отбор, ω — средняя приспособленность популяции, а q — частота менее приспособленного аллеля. Суммарная плата за полное замещение одного аллеля другим составит при этом

C == ∑ ω1ω
ω

Значение С зависит, таким образом, от исходной частоты аллеля, которому благоприятствует отбор, и от скорости замещения. Это значение велико в случае низкой исходной частоты аллеля, которому благоприятствует отбор, и уменьшается с повышением исходной частоты. Кроу и Кимура (Crow, Kimura, 1970*) приводят следующие значения С для разных изменений частот генов (q) в диплоидной системе при отсутствии доминантности:
q C
0.001—0.999 13.81
0.01—0.99  9.19
0.1—0.9  4.39
0.2—0.8  2.77
При постоянной исходной частоте генов значение С изменяется в зависимости от скорости замещения. Скорость замещения зависит в свою очередь от интенсивности отбора, и поэтому s или ω входят в формулу для вычисления величины С. Суммарное число случаев генетической гибели в процессе замещения одного гена другим оказывается практически независимым от интенсивности отбора; но число поколений, на которые распространяются эффекты генетической гибели, измеряется интенсивностью отбора (s).

Холдейн (Haldane, 1957*) получил численные оценки платы за отбор для типичного случая. Он исходил из того, что существует некая обширная диплоидная популяция, содержащая благоприятный мутантный аллель с низкой исходной частотой. Предполагалось, что этот новый аллель обладает умеренным селективным преимуществом по сравнению со старым аллелем. При этих условиях суммарное число случаев генетической гибели в процессе полного замещения одного гена другим обычно в 10— 20, а иногда даже в 100 раз выше числа размножающихся особей в одном поколении (С=10—100). Для простого случая следует ожидать, что в среднем число случаев генетической гибели в процессе замещения гена примерно в 30 раз больше числа взрослых особей на одно поколение (∑D = 30N, С=30).

Плата за отбор и скорость эволюции

Если скорость замещения (s) высока, то замещение одного гена другим теоретически могло бы происходить быстро. Однако на самом деле популяция может оказаться не в состоянии выдержать ту цену, в которую обходится интенсивный отбор. Слишком сильное давление отбора может привести популяцию к гибели.

Число случаев генетической гибели, которое может выдержать популяция в каждом отдельном поколении, строго ограничено. Поэтому процесс замещения одного гена другим должен происходить на протяжении многих поколений, для того чтобы популяция могла постоянно сохранять достаточную численность; это условие устанавливает верхний предел скорости эволюционного изменения для отдельного гена. В том случае, когда ∑D= 30N, замещение гена может произойти за 300, но никак не за 30 поколений (Haldane, 1957*).

Плата за отбор по двум или большему числу независимых генов ещё выше. Эта плата возрастает экспоненциально с увеличением числа независимых генов, одновременно подвергающихся отбору (Haldane, 1957*). Поэтому в популяции, непрерывно сохраняющей жизнеспособность, теоретическая максимальная скорость, с которой может происходить эволюционное изменение по нескольким или многим генам одновременно, должна быть гораздо ниже, чем для любого признака, определяемого единичным геном. Таким образом, если замещение единичного гена может произойти всего за 100 поколений, то на замещение двух независимых генов, отбор по которым происходит одновременно, может потребоваться минимум 200 поколений.

Как отмечалось выше, скорость замещения для любого данного числа независимых генов, определяющих отдельные признаки, каждый из которых детерминирован единичным геном, строго ограничена. Ограничение скорости эволюции становится ещё более жестким, если этот же самый комплекс независимых генов входит в качестве составной части в новое адаптивное сочетание генов, потому что при этом быстрому замещению множественных генов препятствуют два связанных между собой фактора. К высокой цене отбора, направленного на замещение множественных генов, добавляется непрерывное разрушение благоприятного сочетания генов в результате полового процесса. Ограничивающее действие этих двух факторов проявляется с особой силой, когда аллели, входящие в состав нового сочетания генов, всё ещё редки в данной популяции.

Все эти соображения заставляют считать, что эволюционные изменения сложных признаков и сочетаний признаков обычно происходят с умеренной быстротой или медленно. Эмпирические данные относительно скоростей эволюции в некоторых линиях, эволюционирующих медленно или с умеренной быстротой, укладываются в теоретические пределы, устанавливаемые платой за отбор (Haldane, 1957*).

Известно, однако, несколько примеров быстро протекающей эволюции, скорость которой превышает теоретический предел. Один из них будет здесь описан.

Некоторые расы Mimulus guttatus (Scrophulariaceae) занимают в шт. Юта местообитания постплейстоценового возраста. Считается, что возраст этих местообитаний составляет 4000 лет. Следовательно, расовая дифференциация у Mimulus guttatus происходила в шт. Юта в течение 4000 лет, за которые это травянистое растение могло пройти через 4000 поколений (Lindsay, Vickery, 1967*). Различия в признаках между расами другого травянистого растения Potentilla glandutosa (Rosaceae) обусловлены аллельными различиями по крайней мере в 100 генах (Clausen, Hiesey, 1958*). Допустим, что генетические различия между расами Mimulus того же порядка, что и у Potentilla. В таком случае замещение 100 генов должно было произойти за 4000 поколений, т. е. в среднем за каждые 40 поколений замещалось по одному гену. Эту оценку следует считать умеренной в отношении как времени, так и числа генов.

Таким образом, скорость эволюции некоторых организмов, очевидно, превышала потолок, устанавливаемый терпимой платой за отбор. Возникает естественный вопрос: как это им удалось?

Сцепление генов и взаимодействие генов и их влияние на ограничение, налагаемое платой за отбор

В своей первоначальной модели Холдейн постулировал большую величину популяции, независимость двух или большего числа генов, одновременно претерпевающих замещение, и ряд других условий. Эти условия, несомненно, нередко реализуются в природе. Столь же верно, что в природных популяциях часто встречаются отклонения от этих условий. Некоторые из таких отклонений ослабляют ограничение, налагаемое на скорость эволюции платой за отбор (ср. Grant, Flake, 1974b*).

Допустим, что отдельные гены, входящие в новое адаптивное сочетание генов, тесно сцеплены между собой и образуют суперген. Гены, входящие в состав этого супергена, могут замещаться с такой же скоростью и при той же цене, что и один менделевский ген. Цена отбора для одного супергена не выше, чем для единичного менделевского гена. Если гены, составляющие суперген, тесно сцеплены между собой, то популяция может приобрести новое адаптивное сочетание генов за сроки, ограниченные такой же платой за отбор, как и при замещении одного гена (Grant, Flake, 1974b*).

Некоторые типы взаимодействий между генами также, очевидно, снижают цену замещения многих генов. Так, вероятно, обстоит дело в тех случаях, когда селективные преимущества или недостатки отдельных генов, подвергающихся отбору одновременно, связаны между собой. Различные аллели, которым благоприятствует отбор, могут иногда встречаться вместе в одном генотипе; и наоборот, различные аллели, которым отбор не благоприятствует, могут встречаться также вместе в одном альтернативном генотипе. В таком случае генетическая гибель, обусловленная многочисленными отдельными генами, сведется к гибели сравнительно небольшого числа особей. Это в свою очередь сделает возможной более высокую скорость эволюции для признака, контролируемого множественными генами (Mayr, 1963; Maynard Smith, 1968; Mettler, Gregg, 1969*). К таким же выводам пришли некоторые другие авторы, использующие другие модели и терминологию (King, 1966; Crow, 1970; Felsenstein, 1971*).

Влияние структуры популяции на ограничение, налагаемое платой за отбор

Отклонения от условия одной большой непрерывной популяции также могут снизить ограничение, налагаемое платой за отбор на скорость замещения множественных генов. Рассмотрим популяционные структуры двух типов: серию популяций-основательниц и подразделенную, или колониальную, популяционную систему (Grant, Flake, 1974a*).

Следует помнить, что цена отбора достигает наивысшего уровня при низкой частоте тех аллелей, которым благоприятствует отбор. Если бы частоту этих аллелей можно было повысить за счет случайных неселективных факторов, то это позволило бы избежать наиболее обременительной части общего субституционного груза. Механизм для подобных изменений существует в популяциях-основательницах.

У вида, обладающего тенденцией к расселению, обширная полиморфная предковая популяция может дать начало серии дочерних колоний, закладываемых одной или несколькими особями. Такие дочерние колонии, или популяции-основательницы, берут начало от неслучайной выборки из предкового генофонда. Аллели, бывшие ранее редкими, могут достигнуть средней или высокой частоты под действием частично случайных факторов в период закрепления некоторых из новых дочерних колоний. Эти колонии просто избегают значительной части субституционного груза. И в них может сохраняться более низкая цена отбора при всех дальнейших повышениях частот генов вплоть до полного замещения.

Селективная гибель неумолимо собирает с популяции среднюю пошлину за любую данную интенсивность отбора. Популяция, однако, обладает определённым репродуктивным потенциалом, который позволяет компенсировать нормальную долю случайной гибели, а также известную часть случаев генетической гибели. При некоторых типах популяционной структуры уровень случайной смертности может варьировать, повышаясь или понижаясь. В тех случаях, когда случайная смертность понижается, создаются условия для более высокой генетической гибели.

Возьмем в качестве стандарта обширную непрерывную популяцию. Общая сумма случаев селективнной и случайной гибели устанавливает для нее предел скорости эволюции. Рассмотрим теперь популяцию такого же размера, как стандартная, и подверженную тем же самым внешним воздействиям, но разделенную на части. В такой разделенной популяции уровень случайной смертности будет различным в разных колониях. Колонии с более низкой случайной смертностью могут выдержать более тя желое, чем в среднем, бремя селективной гибели, а поэтому могут эволюционировать с более высокой скоростью, чем большая стандартная популяция (Grant, Flake, 1974a*).

Другие способы сокращения платы за отбор

Высказывались и некоторые другие мнения относительно возможностей сокращения платы за отбор. Сам Холдейн (Haldane, 1957*) указал, что генетическая гибель была бы менее опасной для популяции, если бы она затрагивала эмбриональные или ювенильные стадии, а не взрослых особей. Поэтому факторы, благоприятствующие экспрессии генов и их подверженности отбору на ранних стадиях развития, могли бы сделать плату за отбор более терпимой.

Уоллес (Wallace, 1968; 1970*) полагает, что принятое им разграничение жесткого и мягкого отбора (см. гл. 13) может иметь значение для объяснения ограничений, налагаемых платой за отбор. Фактически плата за отбор связана с жестким отбором. При мягком отборе носители неблагоприятного аллеля элиминируются в результате генетической гибели только при суровых условиях среды, но не в пермиссивных условиях.

В своей первой работе Холдейн (Haldane, 1957*) подразумевал одно обстоятельство, которое впоследствии не обсуждалось, а именно что каждая данная популяция обладает постоянным репродуктивным потенциалом, несколько, но не сильно превышающим тот, который обеспечивает одно лишь замещение. Предполагается, что это превышение удерживается на низком уровне за счет сильной межвидовой конкуренции. Генетическая гибель должна происходить за счет этого репродуктивного избытка.

Такое положение может быть изменено. Сравним популяцию, входящую в состав многовидового сообщества и испытывающую сильную межвидовую конкуренцию, со сходной популяцией, живущей в открытом местообитании. Первая популяция может сохранить свое место в сообществе лишь при условии, что смертность в ней не превысит какого-то определённого уровня. Для второй популяции такого ограничения не существует. Отсутствие межвидовой конкуренции даёт ей возможность выдержать более высокий уровень генетической гибели, обеспечивая тем самым более быстрое замещение генов. Холдейн (Haldane, 1957*) лишь вкратце затронул эту возможность.

Существуют, таким образом, разнообразные возможности для быстрой эволюции путем естественного отбора.

i123456789101112131415161718192021222324252627282930313233343536373839