На главную
Библиотека сайта
История развития жизни
Креационизм
Ссылки
Гостевая




i123456789101112131415161718192021222324252627282930313233343536373839

Глава 11

Экспрессия генов в связи с отбором

Популяционно-генетичеокая теория отбора подчеркивает роль генов, а однолокусная модель делает упор на относительную селективную ценность альтернативных аллелей одного гена. Но в самом ли деле естественный отбор оказывает свое действие через гены? Ведь в сущности отбор непосредственно действует на фенотипы и лишь косвенно — на лежащие в их основе гены. Между прямым действием отбора и возникающим в результате изменением частоты гена лежит, следовательно, вся сложная цепь событий, при помощи которых действие гена переводится в фенотипические признаки.

Таким образом, для того чтобы понять деятельность естественного отбора, необходимо учитывать фенотипическое проявление генов. В этой главе будут рассмотрены разные аспекты экспрессии генов. Один комплекс вопросов группируется вокруг типа фенотипического проявления в зависимости от фона, создаваемого средой; другой комплекс касается степени изменяемости фенотипа; а третий — разнообразных способов действия и взаимодействия генов. Еще один аспект экспрессии генов — роль генов, регулирующих скорость филетических изменений,— рассматривается в гл. 30.

Относительность селективной ценности

Рассмотрим сначала следствия, вытекающие из совершенно очевидных взаимоотношений. Данный генотип детерминирует проявление одного и того же фенотипического признака в ряде различных сред. В некоторых средах данный фенотип обладает известным селективным преимуществом; в других средах он может иметь иное селективное преимущество, не давать никакого преимущества или даже быть неблагоприятным в селективном отношении. Следовательно, в одних средах отбор будет благоприятствовать генотипу, детерминирующему этот фенотип, а в других будет благоприятствовать ему меньше или даже не благоприятствовать вовсе. Короче говоря, селективная ценность того или иного аллеля или генотипа не есть некое внутренне присущее ему свойство, а зависит от взаимосвязи между фенотипом и средой.

Простым примером служит окраска раковины у европейской наземной улитки Cepaea nemoralis. Эта улитка живет в разнообразных местообитаниях — от темных буковых лесов с сомкнутым пологом до открытых, залитых солнцем лугов. Она полиморфна по окраске раковины, которая может быть бурой, розовой или желтой. Эти различия в окраске раковины детерминируются одним полиморфным геном. Аллель бурой окраски обусловливает образование бурых раковин, а аллель желтой окраски — желтых во всем диапазоне разнообразных сред, в которых обитает эта улитка.

Улиток поедают дрозды и другие птицы, руководствующиеся при добывании пищи зрением. Бурые раковины обеспечивают защитную окраску, затрудняющую обнаружение улиток птицами в буковых лесах, а желтые — на лугах. В результате такого избирательного выедания улиток птицами бурая окраска раковины преобладает в популяциях, обитающих в лесах, а желтая — в популяциях лугов. Селективные ценности аллелей бурой и желтой окраски связаны, таким образом, с типом местообитания и при смене последнего приобретают прямо противоположные значения (более подробно об этом см. Cain, Sheppard, 1952, 1954; Sheppard, 1959; Lamotte, 1959; Jones, 1973*).

Drosophila pseudoobscura в западной части Северной Америки полиморфна по инверсиям в третьей хромосоме. Каждая инверсия имеет название и буквенное обозначение: Стандарт (ST), Чирикахуа (СН), Эрроухед (AR) и т. д. (см. гл. 5). Установлено, что некоторые инверсии в гетерозиготном состоянии дают своим носителям селективное преимущество по сравнению с гомозиготами по этим инверсиям. Однако адаптивное превосходство гетерозиготных генотипов проявляется только в определённых условиях среды (обзор см. Dobzhansky, 1970*). Так, гетерозиготы ST/CH обладают более высокой селективной ценностью, чем гомозиготы ST/ST и СН/СН при температуре 21—25°С, но не при 16°С (Dobzhansky, Spassky, 1954*). Высокая селективная ценность гетерозиготы ST/CH проявляется лишь в том случае, когда мух выращивают в перенаселенных популяционных ящиках (Levine, 1952*). При температуре 21°С гетерозиготы ST/CH обладают преимуществом, если в корме содержатся дрожжи определённого вида (Kloeckera); если же используются другие дрожжи (Zygosaccharomyces), такого преимущества не наблюдается (da Cunha, 1951; Dobzhansky, Spassky, 1954*).

Пластичность фенотипа

Фенотип представляет собой продукт взаимодействия генотипа и среды в процессе развития. Каждый отдельный фенотипический признак — результат не только влияний, оказываемых во время развития средой, но и результат действия генов. Кроме того, участие факторов среды в формировании фенотипических признаков различается как в отношении разных признаков, так и в отношении разных организмов. У человека, например, участие среды в формировании фенотипических признаков незначительно, если речь идет о группах крови, значительно в случае массы тела и очень велико в сфере умственного развития и поведения.

Разные «семьи» костра (Bromus mollis) сравнивали по диапазону фенотипической изменчивости длины метелки и сроков цветения в ряде контролируемых сред (Jain, 1978*). Были обнаружены значительные различия в степени фенотипической пластичности разных «семей». Этот результат указывает на то, что способность к фенотипическим модификациям находится под генетическим контролем.

Доля изменчивости данного фенотипического признака, обусловленная генотипическими различиями, в отличие от доли, вызванной воздействиями среды, известна под названием наследуемости. Эффективность отбора прямо коррелирует со степенью наследуемости.

Если отбор действует на какой-либо фенотипический признак, который в процессе развития детерминируется в основном генотипической компонентой, тогда как влияние среды незначительно (признак с высокой наследуемостью), то воздействие отбора на состав генофонда будет немедленным и относительно прямым. Однако отбор окажется гораздо менее эффективным (его действие будет осуществляться с большей задержкой) в случае таких фенотипических признаков, которые в значительной степени формируются под влиянием среды. Способность генотипа реагировать соответствующими фенотипическими модификациями на широкий диапазон условий среды препятствует эффективности отбора, обусловленного средой.

Плейотропия

Ген обычно обладает различными и нередко не связанными между собой фенотипичеокими эффектами, или, иными словами, каждый данный ген воздействует на более чем один фенотипический признак. Это явление известно под названием плейотропии. Плейотропия усложняет действие отбора.

Представьте себе, что некий плейотропный аллель определяет два различных эффекта — один благоприятный, а другой неблагоприятный. Истинная селективная ценность этого аллеля для всех практических целей определяется при этом чистым результатом, получаемом от сопоставления создаваемых им селективных преимуществ с его неблагоприятными селективными эффектами. Как только неблагоприятные эффекты начинают перевешивать преимущества, отбор перестает благоприятствовать этому аллелю и начинает действовать против него.

Селекционеры и животноводы постоянно сталкиваются с этой проблемой при искусственном отборе. Некоторые выгодные с хозяйственной точки зрения признаки, такие, как очень высокая урожайность, просто невозможно бывает закрепить в популяции культурных растений или домашних животных, если они коррелируют в процессе развития с очень неблагоприятными признаками, например с пониженной фертильностью. Несомненно, во многих природных популяциях плейотропные влияния подобным же образом сдерживают эффекты естественного отбора.

Модификаторы экспрессивности

На фенотипическое проявление данного гена или сочетания генов оказывают влияние другие гены комплемента, известные под названием модификаторов. В этом и в следующих разделах мы рассмотрим роли генов-модификаторов двух типов — модификаторов экспрессивности и модификаторов доминантности.

Экспрессивность — это степень фенотипического проявления данного гена или сочетания генов. У ряда особей, имеющих одинаковую конституцию по данному гену и выросших или выращенных в стандартной среде, могут наблюдаться разные степени фенотипического проявления этого гена. Так, различные особи и линии дрозофил могут иметь разное число щетинок, хотя их конституция по главному гену, контролирующему щетинки, одинакова и хотя они выращивались в одной и той же среде. О таком гене говорят, что он обладает варьирующей экспрессивностью.

Варьирующая экспрессивность может быть вызвана модификаторами экспрессивности. Плюс-модификаторы усиливают фенотипическое проявление главного гена, а минус-модификаторы подавляют его. Отдельные организмы, несмотря на их генотипическое единообразие в отношении главного гена, генетически различны по своим наборам модификаторов экспрессивности. На действие генов-модификаторов могут, кроме того, оказывать влияние условия среды, что вводит ещё один осложняющий фактор. Варьирующая экспрессивность представляет собой, таким образом, результат сложных взаимодействий между плюс- и минус-модификаторами среды. А это взаимодействие в свою очередь осложняет влияние отбора.

Допустим, что некая популяция мономорфна по одному из главных генов или сочетанию генов, определяющему какой-либо фенотипический признак, но содержит латентную изменчивость в системе генов-модификаторов, В результате действия минус-модификаторов экспрессивности данный фенотипический признак не проявляется в одной среде (E1), в которой он обладал бы адаптивной ценностью, и лишь слабо проявляется в другой среде (E2), в которой он имеет определённое селективное преимущество. Конечно, в среде E1 отбор будет неэффективным. Однако можно ожидать, что отбор создаст системы модификаторов, которые усилят фенотипическое проявление данного гена в среде E2. Этот новый набор модификаторов может, таким образом, иметь эффекты, которые переносятся в среду E1. Признак экспрессируется и может стабилизироваться под действием отбора как в среде E1, так и в среде E2.

Эксперименты, проведённые на некоторых аномальных фенотипах Drosophila melanogaster, по-видимому, подтверждают описанную выше модель (Waddington, 1953; 1956; 1957; Bateman, 1959*). В основу этих экспериментов был положен известный факт, а именно что некоторые отклоняющиеся фенотипы (cross-veinless, bithorax) можно индуцировать у небольшого числа взрослых мух при помощи резких внешних воздействий (высокая температура, эфир) на яйца или куколки. Индуцированные таким образом фенотипичеcкие изменения обычно не передаются по наследству, но в данных экспериментах они в конце концов стали наследственными.

Уоддингтон (Waddinggton) применял шоковое воздействие (обработка теплом или эфиром) на исходные популяции мух на стадиях яйца или куколки; получив соответствующие фенотипические реакции у некоторых из взрослых мух, он проводил отбор на отклоняющиеся фенотипы. Весь этот процесс повторялся из поколения в поколение на протяжении 24—29 поколений. Это был фактически искусственный отбор по отклоняющемуся фенотипическому признаку, проводившийся в аномальной среде, в которой этот признак проявляется.

Отбор оказался эффективным. К концу эксперимента в происходящих от этой популяции поколениях мух частота особей, у которых проявлялась фенотипическая реакция на шоковое воздействие, достоверно повысилась по сравнению с частотой в предковых поколениях, т. е. в начале эксперимента. Кроме того, у некоторых из выведенных таким образом мух отклоняющийся фенотип проявлялся не только в аномальной среде, в которой производился отбор, но и в нормальной среде, по реакциям на которую отбор не производился. В поздних поколениях у некоторых мух наблюдались отклоняющиеся признаки, даже если их не помещали в аномальную внешнюю среду.

Полученные результаты можно интерпретировать по-разному. Одно из правдоподобных объяснений состоит в том, что процесс отбора привел к созданию наборов модификаторов, которые усиливают экспрессивность измененных признаков крыла или груди в аномальной среде. Эти новые эффективные модификаторы не только влияли на фенотипическое проявление в аномальной среде, но обладали, кроме того, побочным действием, наблюдавшимся также и в обычной среде (Stern, 1958; 1959; Bateman, 1959; Milkman, 1960a, b; 1961; Grant, 1963).

Из представленной выше модели с участием модификаторов экспрессивности вытекают следствия, важные для эволюционной теории. Модель показывает, что отбор на некоторый комплекс генов-модификаторов, проводимый в одной среде, может создать генотип, который даёт начало непредсказуемым фенотипическим проявлениям в других средах. Новые потенциальные возможности для фенотипического проявления могут иногда создаваться непреднамеренно при отборе на модификаторы экспрессивности. Таким образом, популяция, в которой происходит отбор применительно к одной новой среде, может приобрести генотипически контролируемые фенотипы, которые в качестве побочного результата оказываются «преадаптированными» ещё и к другим новым средам.

Модификаторы доминантности

Соотношение доминантности и рецессивности в паре аллелей у диплоидного организма может проистекать из относительной силы действия самих этих аллелей, однако этим дело не ограничивается, поскольку доминантность и рецессивность зависят также от действия других генов, известных как модификаторы доминантности. Та или иная гетерозиготная пара аллелей может давать доминантный фенотип на одном генетическом фоне и промежуточный фенотип на другом фоне. Один генетический фон обладает набором мощных модификаторов доминантности — генов-модификаторов, усиливающих фенотипическое проявление доминантного аллеля, тогда как другой генетический фон имеет слабый или отличающийся в каком-либо другом отношении набор модификаторов*.

Напомним, что новые мутации в большинстве случаев бывают вредными и рецессивными. Вредное воздействие мутаций —неизбежное следствие случайности мутационного процесса в организме, который перед этим на протяжении многих поколений подвергался отбору. Рецессивность же не представляет собой свойство, внутренне присущее мутационному процессу. Так почему же новые мутации в большинстве своем бывают рецессивными?

Фишер (Fisher, 1930; 1958) высказал мнение, что естественный отбор создал у диплоидных организмов системы модификаторов, которые усиливают и стабилизируют действие нормальных аллелей дикого типа. Эти модификаторы доминантности будут благоприятными, поскольку они защищают диплоидный организм от непосредственных вредных воздействий большинства новых мутаций. Модификаторы доминантности создают возможность для сохранения в популяции диплоидных организмов как вредных, так и других мутаций в рецессивном состоянии; при этом такие мутации подвергаются медленному отбору в относительно небольшом числе гомозиготных рецессивных выщепенцев.

Фишеровская теория происхождения доминантности согласуется с большинством данных, относящихся к явлениям доминантности и мутационному процессу, даёт общее объяснение различным наблюдаемым фактам, но остается спорной. Некоторые из более поздних авторов принимают её (Мауо, 1966; Sheppard, Ford, 1966), а другие критикуют (Crosby, 1963; Ewens, 1965; Wright, 1977; Wagner, 1981; Wallace, 1981, гл. 21).

Одно из затруднений, с которым сталкивается изложенная теория, состоит в том, что отбор, направленный на сохранение модификаторов доминантности, должен действовать только на гетерозиготы дикий тип/мутант, а такие гетерозиготы после возникновения мутации будут встречаться в популяции очень редко. Вдобавок, для того чтобы отбор благоприятствовал гетерозиготным мутантным генотипам, они должны содержать также плюсмодификаторы доминантности, которые встречаются ещё реже. Поэтому процесс отбора в пользу модификаторов доминантности должен протекать крайне медленно.

Райт (Wright 1977) в своей критике теории Фишера исходит из того, что отбор действует слишком медленно, чтобы привести к развитию модификаторов доминантности, и что доминантность могла бы легче возникать другими путями. Работы Райта частично дают объяснение другим причинам доминантности, не связанным с модификаторами доминантности; он отвергает существование последних. Однако модификаторы доминантности действительно существуют и требуют объяснения.

Вагнер (Wagner, 1981) высказал предположение о возможном способе ускорения селективного процесса. Благоприятный аллель будет распространяться быстрее, если он окажется ещё и доминантным. Модификатор доминантности усилит отбор в пользу главного гена. Это в свою очередь ускорит распространение гена-модификатора. Таким образом, между отбором в пользу главного гена и отбором в пользу гена-модификатора возникает положительная обратная связь. Если главный ген и ген-модификатор сцеплены друг с другом, то за счет обратной связи процесс отбора усилится до максимума.

Генотип как единица отбора

Область приложения однолокусной модели отбора к реальному миру ограничивается главным образом царством бактерий. У многоклеточных организмов фенотипические признаки, подвергающиеся действию отбора, за редкими исключениями определяются не единичными генами, а генными комбинациями. Отбор не проводит различия между аллелями одного гена, а должен действовать на альтернативные формы данной системы генов, состоящей из многих компонентов.

Отбор действует главным образом не на гены как таковые и даже не на генные системы, а на особей данной популяции. У видов же, размножающихся половым путем, особи обычно различаются по многим генам.

Высказанная Докинзом (Dawkins, 1976) точка зрения, что особи высших организмов — это транспортное средство для «эгоистичных генов», стрёмящихся умножить свое число, — редукционизм и упрощение, далекие от реальности.

Отдельный организм, особенно у высокоразвитых форм жизни, представляет собой сложный механизм, состоящий из многих органов, выполняющих различные функции. Эти разнообразные органы и функции должны гармонически сочетаться и координироваться друг с другом. Изменение одного признака, возможно вполне благоприятное в отношении его специфической функции, может оказать неблагоприятные побочные воздействия на другие функции организма. В таких случаях отбор сохранит новый признак или элиминирует его в зависимости от того, даёт ли этот признак отдельному организму как целому чистый выигрыш или чистый проигрыш.

Конечный результат в тех случаях, когда отбор имеет противоположные тенденции, нередко оказывается компромиссным. Жизнь полна таких компромиссов. Яркое оперение райских птиц выполняет полезную роль в брачном поведении, но вместе с тем делает птицу заметной для хищников. Это противоречие разрешается при помощи компромисса: великолепное оперение украшает самцов, которыми можно пожертвовать, а у самок окраска очень скромная.

i123456789101112131415161718192021222324252627282930313233343536373839