На главную
Библиотека сайта
История развития жизни
Креационизм
Ссылки
Гостевая




i123456789101112131415161718192021222324252627282930313233343536373839

Глава 21

Изолирующие механизмы

Классификация

Обмен генами между различными популяциями или популяционными системами ослабляется или предотвращается разного рода преградами, известными под общим названием изолирующих механизмов. Разные авторы предлагают различные системы классификации этих механизмов*. Система, предлагаемая автором; этой книги, представлена в табл. 21.1.

В табл. 21.1 проводится фундаментальное разграничение пространственной и репродуктивной изоляции. В этом мы следуем Добржанскому (Dobzhansky, 1973a; 1951a*), а не Майру (Mayr, 1942; 1963; 1970*), согласно концепции которого географическая изоляция не входит в число изолирующих механизмов. В отличие от других авторов мы отделяем экологическую изоляцию от репродуктивной и возводим её в ранг третьей главной категории — изоляции, создаваемой средой. Имеющиеся для этого основания излагаются ниже. Репродуктивная изоляция разделена в табл. 21.1 на докопуляционные и послекопуляционные преграды, в соответствии с представлениями ряда других авторов (например, Mayr, 1970; Dobzhansky, 1970*).

В случае пространственной изоляции гаметы из разных популяций не встречаются друг с другом, потому что эти популяции живут в областях, разделенных расстояниями, которые слишком велики по сравнению с потенциальными возможностями организмов к расселению. Короче говоря, пространственная изоляция — это изоляция, создаваемая географическим расстоянием, В отличие от этого при репродуктивной изоляции препятствия к скрещиванию порождаются свойствами самих организмов. Благодаря репродуктивной изоляции популяции могут обитать на одной и той же территории, совсем или почти совсем не обмениваясь между собой генами.

Таблица 21.1. Классификация изолирующих механизмов
  1. Пространственные механизмы
    1. Географическая изоляция
  2. Механизмы, создаваемые средой
    1. Экологическая изоляция
  3. Репродуктивные механизмы
    1. Докопуляционные преграды:
      1. Временная изоляция
           а) сезонная
           б) суточная
      2. Этологическая изоляция
      3. Механическая изоляция
      4. Изоляция гамет
  1. Послекопуляционные преграды
    1. Несовместимость
         а) до оплодотворения
         б) после оплодотворения
    2. Нежизнеспособность гибридов
    3. Стерильность гибридов
         а) генная
         б) хромосомная
         с) цитоплазматическая
    4. Разрушение гибридов

Эти два способа изоляции входят в определения рас и видов. Пространственная изоляция свойственна локальным популяциям, локальным расам и географическим расам. Хорошо развитая репродуктивная изоляция — один из отличительных признаков биологических видов. Частичная или неполная репродуктивная изоляция характерна для полувидов.

Изоляция, создаваемая средой, или экологическая изоляция, — третья и в некотором роде промежуточная категория. В этом случае между популяциями существуют генетически обусловленные различия в отношении их экологических потребностей и предпочтений. Способность популяций жить на одной и той же территории определяется наличием соответствующих местообитаний и ниш и силой межвидовой конкуренции. Если сосуществование популяций действительно имеет место, то гибридизация между ними регулируется наличием местообитаний, пригодных для их гибридного потомства. Преграды, не допускающие обмен генами, имеют экологическую природу.

Экологическая изоляция представляет собой универсальную черту, характерную для всех видов, но не только видов. Экологическая изоляция существует также между экологическими расами и между симпатрическими полувидами. Весьма возможно, что между географическими расами обычно имеется некоторая экологическая дифференциация.

В приведенной выше классификации репродуктивная изоляция разделена на изоляцию, создаваемую до- и послекопуляционными преградами. Докопуляционные преграды — это преграды, препятствующие встрече гамет или (у растений) гаметофитов, тогда как послекопуляционные преграды начинают действовать после того, как гаметы или гаметофиты встретились друг с другом.

Экологическая и временная изоляция

Экологическая изоляция — следствие экологической дифференциации симметрических видов. Подобная дифференциация широко распространена и проявляется во многих различных формах. Виды дрозофил, обитающие в одном и том же районе Калифорнии или Бразилии, имеют различные пищевые предпочтения и питаются дрожжами разных видов. В Техасе некоторые виды дубов растут на разных почвах: один вид (Quercus mohriana) встречается на известковой почве, другой (Q. havardi) — на песчаной, а третий (Q. grisea) — на выходах магматических пород.

Экологическая дифференциация на нерепродуктивных стадиях жизненных циклов в той или иной степени снижает шансы на успешную гибридизацию между симпатрическими видами и тем самым способствует их изоляции. В гл. 22 экологическая дифференциация между видами будет рассмотрена более подробно.

У большинства животных и растений существуют определённые сезоны размножения или цветения. Спаривание или перекрёстное опыление происходят в определённое время года (например, летом или осенью), а нередко и в определённое время суток (у одних видов днем, а у других ночью). Близкие виды могут различаться по тому, на какое время года или суток приходится у них период полового размножения. Такие межвидовые различия ведут к временной изоляции. К временной изоляции относятся сезонная изоляция и изоляция, обусловленная различными суточными циклами.

Два близких вида сосен, Pinus radiata и P. attenuata, оказываются в симпатрическом контакте в центральной части Калифорнийского побережья. Здесь у P. radiata пыльца осыпается рано, в феврале, а у P. attenuata — на 6 недель позднее, в апреле, так что между этими двумя видами существует сезонная изоляция (Stebbins, 1950*). Drosophila pseudoobscura и D. persimilis, которые в западной части Северной Америки симпатричны на протяжении обширной области, скрещиваются в одно и то же время года, но в разное время суток: у D. pseudoobscura половая активность наблюдается по вечерам, а у D. persimilis —по утрам (Dobzhansky, 1951b*).

Временная изоляция, подобно любой другой форме репродуктивной изоляции, может быть полной или частичной. У родственных видов растений, произрастающих на одной и той же территории, пики цветения нередко приходятся на разное время, но периоды цветения перекрываются, т. е, имеет место частичная сезонная изоляция.

Механическая изоляция, этологическая изоляция и изоляция гамет

У высших животных и растений имеются сложные репродуктивные системы или цветки, состоящие из мужских и женских репродуктивных органов, которые структурно коадаптированы так, чтобы облегчать копуляцию, осеменение или опыление при нормальном внутривидовом спаривании. Если два вида организмов различаются по строению своих половых органов или цветков, то это препятствует копуляции, осеменению или опылению между особями разных видов. Подобные препятствия создают механическую изоляцию.

Механическая изоляция описана для некоторых пар видов цветковых растений, у которых она обеспечивается сложными механизмами, имеющимися у цветка. В Бразилии Polygala vauthieri и P. monticola brizoidles (Polygalaceae) сосуществуют симпатрически, не образуя гибридов. Пчелы посещают цветки обоих видов и производят опыление. Цветки у этих двух видов Polygala устроены таким образом, что пыльца прилипает к голове пчелы, причём к разным её частям у разных видов. Благодаря такому различному местоположению пыльцы она может быть перенесена только на рыльце того же, но не других видов, что исключает межвидовую гибридизацию (Brantjes, 1982*).

В восточной части Северной Америки Impatiens capensis и I. pallida (Balsaminaceae) часто растут рядом, но не образуют гибридов. Строение цветков у этих двух видов приспособлено к различным опылителям. I. capensis обычно посещается и опыляется рубиногорлыми колибри (Archilochus colubris), a I. pallida — шмелями; изоляция между этими двумя видами и создаётся главным образом благодаря различным опылителям (Wood, 1975*). Аналогичная ситуация существует в той же области у Моnarda (Labiatae); M. didyma опыляется колибри, а М. clinopodia — шмелями (Whitten, 1981*).

У высших животных копуляции обычно предшествует ухаживание. Ухаживание слагается из ряда стимулов и реакций на них (танцы, демонстрации, пение, феромоны и т. п.), которые подготавливают самцов и самок к копуляции. Брачное поведение различается у разных видов, входящих в данную группу, а сигналы часто бывают видоспецифичными. Так, у чешуекрылых феромоны, играющие важную роль в спаривании, часто видоспецифнчны, так же как крики и пение у амфибий и птиц; вследствие этого между самками и самцами, принадлежащими к разным видам, нет взаимного влечения. Подавление межвидового спаривания, обусловленное поведением, и создаёт этологическую изоляцию.

Этологическая изоляция играет ключевую роль в предотвращении межвидовой гибридизации во многих группах животных, как позвоночных, так и беспозвоночных.

Многие водные организмы выделяют гаметы в воду. Наружное оплодотворение зависит при этом от встречи между свобод­ноживущими яйцеклетками и сперматозоидами, а их передвижение и соединение регулируются биохимическими веществами, Эти биохимические аттрактанты могут быть видоспецифичными. В результате взаимное привлечение и оплодотворение происходят между яйцеклетками и сперматозоидами одного и того же вида, но не между половыми клетками разных видов, находящимися в одном и том же водоеме. Это отсутствие взаимного привлечения у гамет разного происхождения и создаёт изоляцию гамет.

Классическим примером изоляции гамет служит морской ёж Strongylocentrotus, у которого оплодотворение наружное и происходит в морской воде. В контролируемых экспериментальных условиях, когда смеси гамет помещали в сосуды с водой, внутри каждого из двух видов — S. franciscanus и S. purpuratus — свободно происходило оплодотворение; однако межвидовые оплодотворения (самка S.f.×S. p и самка S.p.×S.f) были сильно подавлены (Lillie, 1921; Dobzhansky, 1951a*).

Преграды, создаваемые несовместимостью, и нежизнеспособность гибридов

Вернемся к высшим животным и растениям, у которых происходит внутреннее оплодотворение и зародыш развивается в материнском организме. Допустим, что докопуляционные изолирующие механизмы не сработали и произошла копуляция между особями разных видов или опыление чужим видом. В таких случаях образованию гибридов могут препятствовать разного рода внутренние преграды, вступающие в действие либо в родительском поколении, либо в F1.

У покрытосеменных растений между опылением и ростом проростка проходит много стадий развития. Первые пять стадий происходят до оплодотворения: 1) прорастание пыльцевых зерен на рыльцах; 2) рост пыльцевой трубки в столбике; 3) прорастание пыльцевой трубки к зародышевому мешку в семязачатке; 4) высвобождение ядер спермиев; 5) их привлечение к женским гаметам. Оплодотворение — самостоятельная стадия, которая у покрытосеменных происходит в два этапа: 6) оплодотворение яйца; 7) оплодотворение ядра эндосперма. Затем следуют стадии, наступающие после оплодотворения: 8) первые деления зиготы; 9) развитие эндосперма; 10) развитие зародыша; 11) формирование семени; 12) прорастание семени. Следующие стадии относятся уже к новому поколению: 13) становление молодого проростка; 14) рост проростка; 15) развитие зрелого растения.

На любой из этих стадий может произойти блокирование обмена генами после межвидового скрещивания.

Сходная последовательность стадий существует у млекопитающих: осеменение, миграция сперматозоидов, зачатие, имплантация, развитие зародыша, рождение, рост и развитие детеныша. У них также препятствия к успешной гибридизации могут возникать на любой стадии длительного процесса развития.

Все эти препятствия в общем известны как: 1) преграды, обусловленные несовместимостью, и 2) нежизнеспособность гибридов. Где следует проводить границу между этими двумя категориями? Рассмотрим две возможности, каждая из которых имеет свои преимущества и свои недостатки. Главное, о чем следует помнить, где бы мы ни решили провести линию раздела, — это то, что развитие — непрерывный процесс, который может быть заблокирован на любой из его многочисленных стадий.

Мы можем произвольно отнести все препятствия, возникающие до оплодотворения, за счет несовместимости, а действующие после него — за счет нежизнеспособности гибридов. Это разумно с эмбриологической точки зрения, но не всегда практично. Селекционер или животновод могут произведи определённое скрещивание, но по неизвестным причинам не получить жизнеспособных особей F1. Стадию, на которой возникает препятствие, можно, конечно, определить при помощи дальнейших исследований, но это не имеет существенного значения для конечного результата искусственного (или естественного) скрещивания. Поэтому может оказаться более удобным проводить линию раздела между преградами несовместимости и нежизнеспособностью гибридов на более поздней стадии.

Другая возможность — дать такое определение несовместимости, которое включало бы в себя всё разнообразие преград, действующих на всех стадиях, начиная с осеменения или опыления и вплоть до рождения детеныша, откладки яиц или созревания семян. В таком случае нежизнеспособность гибридов означала бы заметное подавление мощности и пороки развития у особей F1, проявляющиеся после рождения, вылупления или прорастания. Преграды, создаваемые несовместимостью на ранних стадиях, следующих за осеменением или опылением, аналогичны изоляции гамет у организмов с наружным оплодотворением,

Стерильность гибридов

Во многих группах животных и растений при межвидовых скрещиваниях образуются мощные, но стерильные гибриды F1, хорошо известным примером таких гибридов служит мул (кобыла×осел). Явления стерильности, хотя они по определению ограничиваются репродуктивной стадией гибридов F1, тем не менее весьма неоднородны. Наблюдается изменчивость в отношении того, на какой именно стадии проявляется стерильность и каковы её генетические причины.

Развитие половых органов и течение мейоза — сложные процессы, которые могут быть легко нарушены в результате дисгармонии во взаимодействиях генов у гибридов. Нарушения развития половых органов можно проиллюстрировать на примере некоторых межвидовых гибридов растений, у которых образуются цветки с абортивными пыльниками. У межвидовых гибридов животных процесс деления клеток зародышевого пути нередко прерывается вследствие генных нарушений: сперматогенез может прекратиться до начала мейотических делений или же мейоз может протекать аберрантно; в любом случае образования сперматозоидов не происходит. Нарушение сперматогенеза на стадиях, предшествующих мейозу, — основная непосредственная причина стерильности у самцов мула; нарушения мейоза — причина стерильности у гибридных самцов при некоторых скрещиваниях между разными видами Drosophila (например, D. pseudoobscura × D. persimilis).

К ограниченной полом стерильности и нежизнеспособности гибридов у раздельнополых животных приложимо обобщение, известное под названием правила Холдейна. Гибриды F1 от межвидовых скрещиваний у раздельнополых животных должны состоять, во всяком случае потенциально, из гетерогаметного пола (несущего хромосомы XY) и гомогаметного (XX) пола. Правило Холдейна гласит, что в тех случаях, когда в проявлении стерильности или нежизнеспособности гибридов существуют половые различия, они наблюдаются чаще у гетерогаметного, чем у гомогаметного пола. У большинства животных, в том числе у млекопитающих и у двукрылых, гетерогаметны самцы; мы только что упоминали о гибридной стерильности у лошадей и у дрозофил. Из правила Холдейна имеются, однако, многочисленные исключения (см. Haldane, 1973; см. также White, 1973*).

Третья стадия развития, на которой может проявляться гибридная стерильность, — это гаметофитное поколение у растений. У цветковых растений из продуктов мейоза непосредственно развиваются гаметофиты — пыльцевые зерна и зародышевые мешки, — которые содержат от двух до нескольких ядер и в которых формируются гаметы. Нежизнеспособность гаметофитов — обычная причина стерильности гибридов у цветковых растений. Мейоз завершается, но нормального развития пыльцы и зародышевых мешков не происходит.

Гибридная стерильность на генетическом уровне может быть обусловлена генными, хромосомными и цитоплазматическими причинами.

Наиболее широко распространена и обычна генная стерильность. Неблагоприятные сочетания ядерных генов родительских типов, принадлежащих к разным видам, могут приводить и действительно приводят к цитологическим отклонениям и нарушениям развития у гибридов F1, что препятствует образованию гамет. Генетический анализ генной стерильности у гибридов Drosophila (D. pseudoobscura×D. persimilis, D. tnelanogaster× D. simulans и т. п.) показывает, что гены, обусловливающие стерильность, локализованы во всех или почти во всех хромосомах родительского вида (см. Dobzhansky, 195la, гл. 8; 1970, гл. 10*).

Неблагоприятные взаимодействия между цитоплазматическими и ядерными генами также ведут к стерильности межвидовых гибридов в разных группах растений и животных (Grun, 1976*). Пример цитоплазматической гибридной стерильности в группе Drosophila paulistorum описан в гл. 19.

Виды растений и животных часто различаются по транслокациям, инверсиям и другим перестройкам, которые в гетерозиготном состоянии вызывают полустерильность или стерильность. Степень стерильности пропорциональна числу независимых перестроек: так гетерозиготность по одной транслокации даёт 50%-ную стерильность, по двум независимым транслокациям — 75%-ную стерильность и т. д. Стерильность растений определяется гаметофитом. У гетерозигот по хромосомным перестройкам в результате мейоза образуются дочерние ядра, несущие нехватки и дупликации по определённым участкам; из таких ядер не получается функциональных пыльцевых зерен и семязачатков. Хромосомная стерильность подобного типа очень часто встречается у межвидовых гибридов цветковых растений.

Течение мейоза у гибрида может быть нарушено либо генными факторами, либо различиями в строении хромосом. Как генная, так и хромосомная стерильность может выражаться в аберрантном течении мейоза. Но типы мейотических аберраций различны. Генная стерильность обычна у гибридов животных, а хромосомная стерильность — у гибридов растений. Генетический анализ некоторых межвидовых гибридов растений показывает, что нередко у одного гибрида наблюдается одновременно и хромосомная, и генная стерильность.

Разрушение гибридов

Допустим, что некий межвидовой гибрид достаточно жизнеспособен и плодовит, для того чтобы размножаться. В таком случае F2, В1, F3 и другие последующие поколения потомков будут обычно содержать значительную долю нежизнеспособных, субвитальных, стерильных и полустерильных особей. Эти типы представляют собой неудачные продукты рекомбинации, возникшие при межвидовой гибридизации. Такое подавление мощности и плодовитости в гибридном потомстве называют разрушением гибридов (hybrid breakdown). Разрушение гибридов — последнее звено в последовательности преград, препятствующих межвидовому обмену генами.

Разрушение гибридов неизменно обнаруживается в потомстве межвидовых гибридов у растений, где его легче наблюдать, чем при большинстве скрещиваний у животных. Гибриды F1 от скрещивания Zauschneria canax ×, Z. septentrionalis (Onagraceae) мощные и полуфертильные, однако большинство растений F2— карликовые, растут медленно, восприимчивы к ржавчине или стерильны. От одного скрещивания между этими видами было получено 2133 растения F2. но ни одно из них не обладало нормальной мощностью (Clausen, Keck, Hiesey, 1940*). B F2 от скрещивания Layia gaillardioides×L. hieracioides (Compositae) 80% особей были нежизнеспособны или субвитальны (Clausen, 1951*). В поколениях F2—F6 от скрещиваний Gilia malior×G. тоdocensis (Polemoniaceae), согласно оценкам, 75% зигот были полностью или частично нежизнеспособны, а среди растений, обладавших нормальной мощностью, было много (70% и более) стерильных и полустерильных (Grant, 1966a*).

Сочетания изолирующих механизмов

Лишь в редких случаях изоляция видов создаётся одним изолирующим механизмом. Обычно несколько различных изолирующих механизмов действуют совместно.

Рассмотрим пару видов Drosophila pseudoobscura и D. persimilis. Разделение этих видов создаётся целой группой различных изолирующих механизмов, к числу которых относятся: экологическая изоляция, временная изоляция, этологическая изоляция, стерильность гибридов и разрушение гибридов. Ни один из этих механизмов в отдельности не может предотвратить гибридизацию. Однако, действуя совместно, они создают полную изоляцию этих двух симпатрических видов в природе (Dobzhansky, 1951b; 1955*).

i123456789101112131415161718192021222324252627282930313233343536373839